
ESP32 Learning Kit

keyestudio WiKi

Dec 06, 2023

KEYESTUDIO ESP32 LEARNING KIT BASIC EDITION

1 1.Description 3

2 2.Kit list 5

3 3.Keyestudio ESP32 Core board 7

4 Getting started with Arduino 11
4.1 Windows System . 11
4.2 Arduino MacOS . 34

5 Arduino Tutorial 47
5.1 Download Arduino code and library files . 47
5.2 Project 01: Hello World . 47
5.3 Project 02: Turn On LED . 53
5.4 Project 03LED Flashing . 67
5.5 Project 04: Breathing Led . 73
5.6 Project 05Traffic Lights . 81
5.7 Project 06: RGB LED . 86
5.8 Project 07: Flowing Water Light . 90
5.9 Project 081-Digit Digital Tube . 93
5.10 Project 094-Digit Digital Tube . 99
5.11 Project 108×8 Dot-matrix Display . 105
5.12 Project 1174HC595N Control 8 LEDs . 112
5.13 Project 12Active Buzzer . 115
5.14 Project 13Passive Buzzer . 119
5.15 Project 14: Mini Table Lamp . 123
5.16 Project 15Tilt and LED . 128
5.17 Project 16: I2C 128×32 LCD . 133
5.18 Project 17Small Fan . 138
5.19 Project 18Dimming Light . 143
5.20 Project 19Flame Alarm . 148
5.21 Project 20Night Lamp . 154
5.22 Project 21: Temperature Instrument . 160
5.23 Project 22Bluetooth . 168
5.24 Project 23WiFi Station Mode . 179
5.25 Project 24WiFi AP Mode . 184
5.26 Project 25WiFi Station+AP Mode . 189

6 Getting started with Python 195

7 Python Tutorial 239

i

7.1 Download Python code files . 239
7.2 Development Environment Configuration . 239
7.3 Project 01: Hello World . 239
7.4 Project 02: Turn On LED . 242
7.5 Project 03LED Flashing . 257
7.6 Project 04: Breathing Led . 265
7.7 Project 05Traffic Lights . 273
7.8 Project 06: RGB LED . 277
7.9 Project 07: Flowing Water Light . 283
7.10 Project 081-Digit Digital Tube . 287
7.11 Project 094-digit Digital Tube . 293
7.12 Project 108×8 Dot-matrix Display . 299
7.13 Project 1174HC595N Control 8 LEDs . 305
7.14 Project 12Active Buzzer . 310
7.15 Project 13Passive Buzzer . 316
7.16 Project 14: Mini Table Lamp . 320
7.17 Project 15Tilt And LED . 326
7.18 Project 16: I2C 128×32 LCD . 332
7.19 Project 17Small Fan . 338
7.20 Project 18Dimming Light . 346
7.21 Project 19Flame Alarm . 355
7.22 Project 20Night Lamp . 365
7.23 Project 21Temperature Instrument . 373
7.24 Project 22WiFi Station Mode . 384
7.25 Project 23WiFi AP Mode . 388
7.26 Project 24WiFi Station+AP Mode . 392

8 Getting started with C language(Raspberry Pi) 397
8.1 Install the Raspberry Pi OS System . 397
8.2 Preparation of C language control basic hardware: . 430
8.3 Import the Arduino C library . 451

9 C language (Raspberry Pi) Tutorial 457
9.1 Project 01: Hello World . 457
9.2 Project 02: Turn On LED . 462
9.3 Project 03LED Flashing . 474
9.4 Project 04: Breathing Led . 480
9.5 Project 05Traffic Lights . 488
9.6 Project 06: RGB LED . 493
9.7 Project 07: Flowing Water Light . 497
9.8 Project 081-Digit Digital Tube . 499
9.9 Project 094-Digit Digital Tube . 506
9.10 Project 108×8 Dot-matrix Display . 511
9.11 Project 1174HC595N Control 8 LEDs . 517
9.12 Project 12Active Buzzer . 520
9.13 Project 13Passive Buzzer . 524
9.14 Project 14: Mini Table Lamp . 527
9.15 Project 15Tilt And LED . 532
9.16 Project 16: I2C 128×32 LCD . 536
9.17 Project 17Small Fan . 540
9.18 Project 18: Dimming Light . 544
9.19 Project 19Flame Alarm . 550
9.20 Project 20: Night Lamp . 556
9.21 Project 21Temperature Instrument . 561

ii

9.22 Project 22Bluetooth . 567
9.23 Project 23WiFi Station Mode . 577
9.24 Project 24WiFi AP Mode . 583
9.25 Project 25WiFi Station+AP Mode . 588

iii

iv

ESP32 Learning Kit

KEYESTUDIO ESP32 LEARNING KIT BASIC EDITION 1

ESP32 Learning Kit

2 KEYESTUDIO ESP32 LEARNING KIT BASIC EDITION

CHAPTER

ONE

1.DESCRIPTION

Do you want to learn about programming?

As long as you’re passionate about science and dare to explore new things, this kit is surely the best choice for you. The
Keyestudio ESP32 Learning Kit Basic Edition mainly contains some common electronic components/sensors/modules,
a ESP32 mainboard and bread wires are also included.

As many as 74 project tutorials are provided, which contain detailed wiring diagrams, components knowledge, and
fascinating project code. Each project is produced using Thonny for Windows, Arduino IDE for Windows, and Arduino
IDE for Raspberry Pi. It’s easy to get started.

You can create numerous fascinating DIY experiments with one controller (ESP32), various of sensors/modules and
electronics. These courses can give you a deeper understanding of programming methods, logic, electronic circuits
and the Linux operating system (Raspberry Pi).

3

ESP32 Learning Kit

4 Chapter 1. 1.Description

5

ESP32 Learning Kit

CHAPTER

TWO

2.KIT LIST

ESP32 Main-
board*1

Blue LED*10 Red LED*10 Yellow LED*10 Green LED*10

White LED*10 RGB*1 220Resistor*10 10KResistor*10 1KResistor*10

10K Potentiome-
ter*1

Active Buzzer*1 Passive
Buzzer*1

Button Switch*4 Tilt Switch*1

Photoresistor*3 Flame Sensor*1 10K Thermis-
tor*1

Yellow Cap*2 Blue Cap*2

IC 74HC595N *1 1-Digit Tube Display*1 4-Digit Tube
Display*1

8*8 Dot Matrix
Display *1

LCD_128X32_DOT
*1

S8050 Triode *2 S8550 Triode *2 Fan*1 Dc Motor*1 Breadboard
Wire*30

M-F Dupont
Wire*10

830Breadboard*1 USB Cable*1 Resistance
Card*1

Diode*1

6 AA Battery
Holder*1

Keyestudio Breadboard special
power module*1

6 Chapter 2. 2.Kit list

CHAPTER

THREE

3.KEYESTUDIO ESP32 CORE BOARD

Introduction

Keyestudio ESP32 Core board is a Mini development board based on the ESP-WROOM-32 module. The board has
brought out most I/O ports to pin headers of 2.54mm pitch. These provide an easy way of connecting peripherals
according to your own needs.

When it comes to developing and debugging with the development board, the both side standard pin headers can make
your operation more simple and handy.

The ESP-WROOM-32 module is the industry’s leading integrated WiFi + Bluetooth solution with less than 10 external
components. It integrates antenna switches, RF balun, power amplifiers, low noise amplifiers, filters as well as power
management modules. At the same time, it also integrates TSMC’s low-power 40nm technology, power performance
and RFperformance, making it safe, reliable and easy to expand to a variety of applications.

Specifications

• Microcontroller: ESP-WROOM-32 Module

• USB to serial port chip: CP2102-GMR

• Working voltage: DC 5V

• Working current80mAAverage

• Current supply500mAMinimum

• Working temperature range : -40°C ~ +85°C

• WiFi modeStation/SoftAP/SoftAP+Station/P2P

• WiFi protocol802.11b/g/n/e/i802.11nspeed up to 150 Mbps

• WiFi frequency range2.4 GHz ~ 2.5 GHz

7

ESP32 Learning Kit

• Bluetooth protocolconform to Bluetooth v4.2 BR/EDR and BLE Standard

• Dimensions55*26*13mm

• Weight9.3g

Pin out

ESP32 has fewer pins than commonly used processors, but it doesn’t have any problems reusing multiple functions on
pins.

Warning: The pin voltage level of the ESP32 is 3.3V. If you want to connect the ESP32 to another device with an
operating voltage of 5V, you should use a level converter to convert the voltage level.

Power Pins: The module has two power pins +5V and 3.3V. You can use these two pins to power other devices and
modules.

8 Chapter 3. 3.Keyestudio ESP32 Core board

ESP32 Learning Kit

GND Pins: The module has three grounded pins.

Enable pin (EN) : This pin is used to enable and disable modules. The pin enables module at high level and disables
module at low level.

Input/Output pins (GPIO) : You can use 32 GPIO pins to communicate with LEDs, switches and other input/output
devices. You can also pull these pins up or down internally.

Note: Though GPIO6 to GPIO11 pins (SCK/CLK, SDO/SD0, SDI/SD1, SHD/SD2, SWP/SD3 and SCS/CMD pins)
are used for SPI communication for the internal module, which are not recommended.

ADC: You can use the 16 ADC pins on this module to convert analog voltages (the output of some sensors) into
digital voltages. Some of these converters are connected to internal amplifiers and which are capable of measuring
small voltages with high accuracy.

DAC: ESP32 module has two A/D converters with 8-bit precision.

Touch pad: There are 10 pins on the ESP32 module that are sensitive to capacitance changes. You can attach these
pins to certain PCB’s pads and use them as touch switches.

SPI: There are two SPI interfaces on the module, which can be used to connect the display screen, SD/microSD
memory card module as well as external flash memory, etc.

I2C: SDA and SCL pins are used for I2C communication.

Serial Communication (UART) : There are two UART serial interfaces on this module, which can be used to transfer
up to 5Mbps of information between two devices . The UART0 also has CTS and RTS control functions.

9

ESP32 Learning Kit

PWM: Almost all ESP32 input/output pins can be used for PWM(pulse-width modulation). Using these pins can
control the motors, LED lights and color changes for some other sensorsfor example: color sensor, etc.

Components

10 Chapter 3. 3.Keyestudio ESP32 Core board

CHAPTER

FOUR

GETTING STARTED WITH ARDUINO

Development Environment Configuration

Click on the link to enter the development environment setup tutorialDevelopment Environment Configuration-
Windows

4.1 Windows System

11

ESP32 Learning Kit

4.1.1 Download and install Arduino software

1First, enter arduino’s official website: https://www.arduino.cc/ , and click “SOFTWARE”to enter the download page.
As shown in the figure below

(2) Then, select and download the corresponding installer for your operating system. If you are a Windows user, please
select “Windows Installer” to download to install the driver correctly.

12 Chapter 4. Getting started with Arduino

https://www.arduino.cc/

ESP32 Learning Kit

Choose to click the Windows Win7 and newer to download Arduino 1.8.16 version installer, which requires manual
installation. But when click the Windows ZIP File, the Arduino 1.8.16 zip file will be downloaded directly, just unzip
it to complete the installation.

In general, you can click JUST DOWNLOAD to download it.

(3) After the Arduino IDE is downloaded, continue the installation. When you receive the warning from the operating
system, please allow the driver installation by clicking I Agree first, and then click Next after selecting the components
to install.

4.1. Windows System 13

ESP32 Learning Kit

4Select the installation directory (we recommend keeping the default directory), and then click Install.

14 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

5Select Install if the following screen appears.

This process extracts and installs all the necessary files to properly execute the Arduino software (IDE).

4.1. Windows System 15

ESP32 Learning Kit

After installation is complete, an Arduino Software shortcut will be generated in the desktop.

4.1.2 Install a driver on Windows

NoteIf you have installed the driver, just skip it

Before using the ESP32 board, you must install a driver, otherwise it can not communicate with the computer. Unlike
the USB series chip (ATMEGA8U2) of the Arduino UNO R3, the ESP32 board is used the CP2102 chip USB series
chip and USB type C interface.

The driver of the CP2102 chip is included in 1.8.0 version and newer version of Arduino IDE. Usually, you connect the
board to the computer and wait for Windows to begin its driver installation process. After a few moments, the process
will succeed.

Note:

1. Please make sure that your IDE is updated to 1.8.0 or newer version

16 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

2. If the version of Arduino IDE you download is below 1.8, you should download the driver of CP2102 and install it
manually.

Link to download the driver of CP2102: CP2102-Driver-File-Windows

If the driver installation process fail, you need to install the driver manually. Open device Manager for your computer
and right-click“the computer”→click“Properties”→Click“Device Manager”. Look under Ports (COM & LPT) or other
device, a yellow exclamation mark means that the CP2102 driver installation failed.

It shows that the driver for CP2102 fails to be installed successfully if there is a yellow mark. Double-

click , and then click “Update drive. . .” to update the driver.

4.1. Windows System 17

ESP32 Learning Kit

Click “Browse my computer for drivers”to find the Arduino software we installed or downloaded.

18 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

There is a drivers folder in Arduino software installed package), open the driver folder and you can see
the driver of CP210X series chips.

Click“Browse. . .”, then find the drivers folder, or you could enter“driver”to search in rectangular box, then click“Next”,

4.1. Windows System 19

ESP32 Learning Kit

After a while, the driver is installed successfully.

20 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

Open the computer device Manager again, you can see that the CP2102 driver has been successfully installed, and find
the yellow exclamation mark disappear.

4.1. Windows System 21

ESP32 Learning Kit

4.1.3 Install the ESP32 on Arduino IDE

The installation process for ESP32 is almost the same as that for ESP8266. If you are to install ESP32 on an Arduino
IDE, follow these steps

Noteyou need to download Arduino IDE 1.8.5 or advanced version to install the ESP32.

1) Click the icon to open the Arduino IDE

22 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

2Click“File” →**“Preferences”**copy the website addresshttps://dl.espressif.com/dl/package_esp32_index.json in
the“Additional Boards Manager URLs:”and then click“OK” to save the address.

4.1. Windows System 23

https://dl.espressif.com/dl/package_esp32_index.json

ESP32 Learning Kit

24 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

3First click “Tools”→“Board:”and click “Boards Manager. . .”to enter“Boards Manager”, enter“ESP32”in the box-
after“ALL”, then select the latest version to install, the installation package is not large, click“Install”to Install the
plug-in, as shown in the figure below.

4.1. Windows System 25

ESP32 Learning Kit

4. After successful installation, click“Close”to Close the page

4.1.4 Arduino IDE Setting:

1Click the icon to open the Arduino IDE.

26 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

2When downloading the code to the board, you must select the correct name of Arduino board that matches the board
connected to your computer, then click“Tools”→“Board:”. As shown below ;

(Note: we use the ESP32 board in this tutorial; therefore, we select ESP32 Arduino**)**

4.1. Windows System 27

ESP32 Learning Kit

28 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

Set the board type as follows:

4.1. Windows System 29

ESP32 Learning Kit

Then select the correct COM port (the corresponding COM port can be seen after the driver is installed successfully).

30 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

4.1. Windows System 31

ESP32 Learning Kit

Before a code was uploaded to the ESP32 mainboard, we have to demonstrate the functionality of each symbol that
appeared in the Arduino IDE toolbar.

32 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

A- Used to verify whether there is any compiling mistakes or not.

B- Used to upload the sketch to your Arduino board.

C- Used to create shortcut window of a new sketch.

D- Used to directly open an example sketch.

E- Used to save the sketch.

F- Used to send the serial data received from board to the serial monitor.

4.1. Windows System 33

ESP32 Learning Kit

4.2 Arduino MacOS

4.2.1 Development Environment Configuration–Mac OS

Click on the link to enter the development environment setup tutorialDevelopment Environment Configuration-MacOS

34 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

4.2.2 Download Arduino IDE:

4.2.3 How to install the CP2102 driver

(Note: If you haven’t installed the driver installed, please do the following.)

(1) Connect the ESP32 motherboard to your MacOS computer using a USB cable and open the Arduino IDE.

4.2. Arduino MacOS 35

ESP32 Learning Kit

Click Tools→Board: ESP32 Dev Module and /dev/cu.usbserial-0001.

36 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

Click to upload the test code

Note: If the the upload fails, follow the steps below to install the CP2102 driver. Perform step (2) to (16).

2Download link for CP2102CP2102-Driver-File-MAC.zip

3Download MacOS version

4.2. Arduino MacOS 37

ESP32 Learning Kit

4Unzip the downloaded package

5Open the folder and double-click“SiLabsUSBDriverDisk.dmg”file

Then you can see the following file

38 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

Double-click**“Install CP210x VCP Driver”tap**“Don’t warn me when opening application on this disk im-
age”and click“Open”

7Click“Continue”

4.2. Arduino MacOS 39

ESP32 Learning Kit

8Click“Agree”then tap“Continue”

9Click“Continue”then input your user password

40 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

10. Select“Select Open Security Preferences”

4.2. Arduino MacOS 41

ESP32 Learning Kit

11Click on security lock and enter your user password to authorize.

42 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

11) When you see that the lock is opened, click “Allow”.

Return to the installation interface and wait for the installation as prompted.

4.2. Arduino MacOS 43

ESP32 Learning Kit

14The installation is successful

15Open arduinoIDEclick“Tools”and tap“ESP32 Dev Module” and“/dev/cu.usbserial-0001”.

44 Chapter 4. Getting started with Arduino

ESP32 Learning Kit

16Click to upload the program, and you can see the program burned successfully

4.2. Arduino MacOS 45

ESP32 Learning Kit

46 Chapter 4. Getting started with Arduino

CHAPTER

FIVE

ARDUINO TUTORIAL

5.1 Download Arduino code and library files

Click on the link to download Arduino code files and library files:Arduino-Codes-and-Libraries

5.2 Project 01: Hello World

5.2.1 1.Introduction

For ESP32 beginners, we’ll start with some simple things. In this project, you just need an ESP32 mainboard, a USB
cable and a computer to complete“Hello World!”Project. It is not only a communication test for ESP32 mainboard and
computer, but also a primary project for ESP32.

5.2.2 2.Components

ESP32*1 USB Cable*1

5.2.3 3.Wiring

In this project, we use a USB cable to connect the ESP32 to the computer.

47

ESP32 Learning Kit

5.2.4 4.Test Code

//***
/*
* Filename : Hello World
* Description : Enter the letter R,and the serial port displays"Hello World".
* Auther :http//www.keyestudio.com
*/
char val;// defines variable "val"
void setup()
{
Serial.begin(115200);// sets baudrate to 115200
}
void loop()
{
if (Serial.available() > 0) {
val=Serial.read();// reads symbols assigns to "val"
if(val=='R')// checks input for the letter "R"
{ // if so,
Serial.println("Hello World!");// shows “Hello World !”.

}
}

}
//***

Before uploading the project code to ESP32click“Tools”→“Board” and select“ESP32 Wrover Module”.

Select the serial port.

48 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

Note: For macOS users, if the uploading fails, please set the baud rate to 115200 before clicking .

5.2. Project 01: Hello World 49

ESP32 Learning Kit

Click to download the code to ESP32.

50 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot button
after the percentage of uploading progress appears, as shown below:

5.2. Project 01: Hello World 51

ESP32 Learning Kit

The code is uploaded successfully

52 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.2.5 5.Test Result

After the code is uploaded successfully, power up with a USB cable and click the icon to enter the serial monitor.

Set baud rate to 115200 and type “R” in the text box. Click “Send”, and the serial monitor will display “Hello World!”.

5.3 Project 02: Turn On LED

5.3.1 1.Introduction

In this project, we will show you how to light up the LED. We use the ESP32’s digital pin to turn on the LED so that
the LED is lit up.

5.3.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

Red LED*1 220 Resistor*1 Jumper Wire*2

5.3. Project 02: Turn On LED 53

ESP32 Learning Kit

5.3.3 3.Component Knowledge

1LED:

The LED is a semiconductor known as “light-emitting diode” , which is an electronic device made from semiconducting
materials(silicon, selenium, germanium, etc.). It has an anode and a cathode, the short lead is cathode, which connects
to GND, the long lead is anode, which connects to 3.3V or 5V.

2Five-band resistor

A resistor is an electronic component in a circuit that restricts or regulates the flow current to flow. On the left is the
appearance of the resistor and on the right is the symbol for the resistance in the circuit . Its unit is(). 1 m= 1000 k1k=
1000.

We can use resistors to protect sensitive components, such as LED. The strength of the resistance is marked on the
body of the resistor with an electronic color code. Each color code represents a number, and you can refer to it in a
resistance card.

-Color 1 – 1st Digit.

-Color 2 – 2nd Digit.

-Color 3 – 3rd Digit.

-Color 4 – Multiplier.

-Color 5 – Tolerance.

54 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

In this kit, we provide three five-band resistors with different resistance values. We three five-band resistors as an
example.

220 Resistor*10

10K Resistor*10

5.3. Project 02: Turn On LED 55

ESP32 Learning Kit

1K Resistor*10

In the same voltage, there will be less current and more resistance. The connection between current(I), voltage(V), and
resistance® can be expressed by the formula: I=U/R. In the figure below, if the voltage is 3V, the current through R1
is: I = U / R = 3 V / 10 K= 0.0003A= 0.3mA.

Don’t connect a low resistance directly to the two poles of the power supply, which will cause excessive current to

56 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

damage the electronic components. Resistors do not have positive and negative poles.

3Bread board

Breadboards are used to build and test circuits quickly before completing any circuit design. There are many holes in the
breadboard that can be inserted into circuit components such as integrated circuits and resistors. A typical breadboard
is shown below

The breadboard has strips of metal , which run underneath the board and connect the holes on the top of the board. The
metal strips are laid out as shown below. Note that the top and bottom rows of holes are connected horizontallywhile
the remaining holes are connected vertically.

The first two rows (top) and the last two rows (bottom) of the breadboard are used for the positive pole (+) and negative
pole (-) of the power supply respectively. The conductive layout of the breadboard is shown in the figure below:

5.3. Project 02: Turn On LED 57

ESP32 Learning Kit

When we connect DIP (Dual In-line Packages) components, such as integrated circuits, microcontrollers, chips and so
on, we can see that a groove in the middle isolates the middle part, so the top and bottom of the groove is not connected.
DIP components can be connected as shown in the following diagram:

58 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.3. Project 02: Turn On LED 59

ESP32 Learning Kit

4Power Supply

The ESP32 needs 3.3V-5V power supply. In this project, we will connect the ESP32 to the computer via an USB cable.

5.3.4 4.Wiring Diagram

First, disconnect all power from the ESP32. Then build the circuit according to the wiring diagram. After the circuit
is built and verified correctly, connect the ESP32 to your computer via a USB cable.

Note: Avoid any possible short circuits (especially connecting 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause perma-
nent damage to your hardware!

Note:

How to connect a LED

60 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

How to identify the 220 Five-band resistor

5.3.5 5.Test Code

//**
/*
* Filename : Turn On LED
* Description : Make an led on.
* Auther : http//www.keyestudio.com
*/
#define LED_BUILTIN 15

// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin LED_BUILTIN as an output.
pinMode(LED_BUILTIN, OUTPUT);

}
void loop() {
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

}
//***

Before uploading the code to ESP32click“Tools”→“Board” and select“ESP32 Wrover Module”.

5.3. Project 02: Turn On LED 61

ESP32 Learning Kit

Select the serial port.

62 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

Note: For macOS users, if the uploading fails, please set the baud rate to 115200 before clicking .

5.3. Project 02: Turn On LED 63

ESP32 Learning Kit

Click to download the code to ESP32.

64 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

5.3. Project 02: Turn On LED 65

ESP32 Learning Kit

The code is uploaded successfully

5.3.6 6.Test Result

After uploading the code successfully, power up with a USB cable and the LED will lit up.

66 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.4 Project 03LED Flashing

5.4.1 1.Introduction

In this project, we will show you the LED flashing effect. We will work to use the ESP32’s digital pin to turn on the
LED and make it flash.

5.4.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

Red LED*1 220 Resistor*1 Jumper Wire*2

5.4.3 3.Wiring Diagram

First, disconnect all power from the ESP32. Then build the circuit according to the wiring diagram. After the circuit
is built and verified correctly, connect the ESP32 to your computer via a USB cable.

Note: Avoid any possible short circuits (especially connecting 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause perma-
nent damage to your hardware!

5.4. Project 03LED Flashing 67

ESP32 Learning Kit

Note:

How to connect a LED

How to identify the 220 Five-band resistor

68 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.4.4 4.Test Code

//**
/*
* Filename : External LED flashing
* Description : Make an led blinking.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED 15 //define the led pin

// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin LED as an output.
pinMode(PIN_LED, OUTPUT);

}

// the loop function runs over and over again forever
void loop() {
digitalWrite(PIN_LED, HIGH); // turn the LED on (HIGH is the voltage level)
delay(500); // wait for 0.5s
digitalWrite(PIN_LED, LOW); // turn the LED off by making the voltage LOW
delay(500); // wait for 0.5s

}
//***

Before uploading the code to ESP32, please check the configuration of Arduino IDE.

Click “Tools” to confirm the board type and port, as shown below:

5.4. Project 03LED Flashing 69

ESP32 Learning Kit

Click to download the code to ESP32.

70 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

The code is uploaded successfully

5.4. Project 03LED Flashing 71

ESP32 Learning Kit

5.4.5 5.Test Result

After uploading the code successfully, power up with a USB cable and the LED will start flashing.

72 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.5 Project 04: Breathing Led

5.5.1 1.Introduction

In previous studies, we know that LEDs have on/off state, so how to enter the intermediate state? How to output an
intermediate state to make the LED half bright? That’s what we’re going to learn.

Breathing light, that is, LED is turned from off to on gradually, and gradually from on to off, just like “breathing”.
However, how to control the brightness of a LED? We will use ESP32’s PWM to achieve this target.

5.5.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

Red LED*1 220 Resistor*1 Jumper Wire*2

5.5. Project 04: Breathing Led 73

ESP32 Learning Kit

5.5.3 3.Component Knowledge

Analog & Digital

An Analog Signal is a continuous signal in both time and value. On the contrary, a digital signal or discrete time
signal is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A familiar
example of an analog signal would be how the temperature throughout the day continuously changes and could not
change instantaneously from 0℃ to 10℃. However, digital signals can instantaneously change in value. This change is
expressed in numbers as 1 and 0 (the basis of binary code). Their differences can be seen more easily when compared,
as shown below:

In practical application, we often use binary as the digital signal, that is a series of 0’s and 1’s. Since a binary signal
only has two values (0 or 1), it has great stability and reliability. Lastly, both analog and digital signals can be converted
into each other.

74 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

PWM

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits. Common
processors cannot directly output analog signals. PWM technology makes it very convenient to achieve this conversion
(translation of digital to analog signals).

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high levels and
low levels, which alternately last for a while. The total time for each set of high levels and low levels is generally fixed,
which is called the period (Note: the reciprocal of the period is frequency). The time of high level outputs is generally
called “pulse width”, and the duty cycle is the percentage of the ratio of pulse duration, or pulse width (PW) to the total
period (T) of the waveform.

The longer the output of high levels last, the longer the duty cycle and the higher the corresponding voltage in the
analog signal will be. The following figures show how the analog signal voltages vary between 0V-3.3V(high level is
3.3V) corresponding to the pulse width 0%-100%:

The longer the PWM duty cycle is, the higher the output power will be. Therefore, we can use PWM to control the
brightness of an LED or the speed of DC motor and so on. It is evident from the above that PWM is not real analog,
and the effective value of the voltage is equivalent to the corresponding analog. Then we can control the output power
of the LED and other output modules to achieve different effects.

5.5. Project 04: Breathing Led 75

ESP32 Learning Kit

ESP32 and PWM:

On ESP32, the LEDC(PWM) controller has 16 separate channels, each of which can independently control frequency,
duty cycle, and even accuracy. Unlike traditional PWM pins, the PWM output pins of ESP32 are configurable, with
one or more PWM output pins per channel. The relationship between the maximum frequency and bit precision is
shown in the following formula, where the maximum value of bit is 31.

For example, generate a PWM with an 8-bit precision (28=256. Values range from 0 to 255) with a maximum frequency
of 80,000,000/255 = 312,500Hz.

5.5.4 4.Wiring Diagram

Note:

How to connect a LED

76 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

How to identify the 220 Five-band resistor

5.5.5 5.Test Code

The design of this project makes the GPIO15 output PWM, and the pulse width gradually increases from 0% to 100%,
and then gradually decreases from 100% to 0%.

//**
/*
* Filename : Breathing Led
* Description : Make led light fade in and out, just like breathing.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED 15 //define the led pin
#define CHN 0 //define the pwm channel
#define FRQ 1000 //define the pwm frequency
#define PWM_BIT 8 //define the pwm precision
void setup() {
ledcSetup(CHN, FRQ, PWM_BIT); //setup pwm channel
ledcAttachPin(PIN_LED, CHN); //attach the led pin to pwm channel

}

void loop() {
(continues on next page)

5.5. Project 04: Breathing Led 77

ESP32 Learning Kit

(continued from previous page)

for (int i = 0; i < 255; i++) { //make light fade in
ledcWrite(CHN, i);
delay(10);

}
for (int i = 255; i > -1; i--) { //make light fade out
ledcWrite(CHN, i);
delay(10);

}
}
//***

Before uploading Project Code to ESP32, please check the configuration of Arduino IDE.

Click “Tools” to confirm the board type and port as shown below:

Click to download the code to ESP32.

78 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

The code is uploaded successfully!

5.5. Project 04: Breathing Led 79

ESP32 Learning Kit

5.5.6 6.Test Result

After uploading the code successfully, power up with a USB cable and the LED is turned from ON to OFF and then
back from OFF to ON gradually like breathing.

80 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.6 Project 05Traffic Lights

5.6.1 1.Introduction

Traffic lights are closely related to people’s daily lives, which generally show red, yellow, and green. Everyone should
obey the traffic rules, which can avoid many traffic accidents. In this project, we will use ESP32 and some LEDs (red,
green and yellow) to simulate the traffic lights.

5.6.2 2.Components

ESP32*1 Red LED*1 USB Cable*1 Jumper Wires

Bread board*1 Yellow LED*1 Green LED*1 220 Resistor*3

5.6.3 3.Wiring Diagram

Note:

How to connect a LED

5.6. Project 05Traffic Lights 81

ESP32 Learning Kit

How to identify the 220 Five-band resistor

5.6.4 4.Test Code

//**
/*
* Filename : Traffic Lights
* Description : Simulated traffic lights.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED_RED 0 //define the red led pin
#define PIN_LED_YELLOW 2 //define the yellow led pin
#define PIN_LED_GREEN 15 //define the green led pin

void setup() {
pinMode(PIN_LED_RED, OUTPUT);
pinMode(PIN_LED_YELLOW, OUTPUT);
pinMode(PIN_LED_GREEN, OUTPUT);

}

void loop() {
digitalWrite(PIN_LED_GREEN, HIGH);// turns on the green led

(continues on next page)

82 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

delay(5000);// delays 5 seconds
digitalWrite(PIN_LED_GREEN, LOW); // turns off the green led
for(int i=0;i<3;i++)// flashes 3 times.

{
delay(500);// delays 0.5 second
digitalWrite(PIN_LED_YELLOW, HIGH);// turns on the yellow led
delay(500);// delays 0.5 second
digitalWrite(PIN_LED_YELLOW, LOW);// turns off the yellow led

}
delay(500);// delays 0.5 second
digitalWrite(PIN_LED_RED, HIGH);// turns on the red led
delay(5000);// delays 5 second
digitalWrite(PIN_LED_RED, LOW);// turns off the red led

}
//***

Before uploading the code to ESP32, please check the configuration of Arduino IDE.

Click “Tools” to confirm the board type and port as shown below:

5.6. Project 05Traffic Lights 83

ESP32 Learning Kit

Click to download the project code to ESP32.

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

84 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

The code is uploaded successfully

5.6.5 5.Test Result

After uploading the code successfully, power up with a USB cable and what you’ll see are below:

First, the green light will be on for five seconds then off;

Next, the yellow light blinks three times then goes off;

Then, the red light goes on for five seconds then goes off;

Repeat step 1 to 3 above.

5.6. Project 05Traffic Lights 85

ESP32 Learning Kit

5.7 Project 06: RGB LED

5.7.1 1.Introduction

RGB is composed of three colors (red, green and blue),which can emit different colors by mixing these three colors.

In this project, we will introduce the RGB and show you how to use ESP32 to control the RGB to emit different color
lights .RGB is pretty basic, but it’s also a great way to learn the fundamentals of electronics and coding.

86 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.7.2 2.Components

ESP32*1 RGB LED Jumper Wires

Breadboard*1 220 Resistor*3 USB Cable*1

5.7.3 3.Component Knowledge

Most monitors adopt the RGB color standard, and all colors on a computer screen are a mixture of red, green and blue
in varying proportions.

This RGB LED has 4 pins, with each color (red, green, blue) and a common cathode. To change its brightness, we can
use the PWM of the ESP32 pins, which can give different duty cycle signals to the RGB to produce different colors of
light.

If we use three 10-bit PWM to control the RGB, in theory, we can create 2 10*210*210 =1,073,741,824(1billion) colors
through different combinations.

5.7. Project 06: RGB LED 87

ESP32 Learning Kit

5.7.4 4.Wiring Diagram

Note:

How to connect a LED

How to identify the 220 Five-band resistor

88 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.7.5 5.Test Code

//**
/*
* Filename : RGB LED
* Description : Use RGBLED to show random color.
* Auther : http//www.keyestudio.com
*/
int ledPins[] = {0, 2, 15}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels
int red, green, blue;
void setup() {
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit
ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

}
}

void loop() {
red = random(0, 256);
green = random(0, 256);
blue = random(0, 256);
setColor(red, green, blue);
delay(200);

}

void setColor(byte r, byte g, byte b) {
ledcWrite(chns[0], 255 - r); //Common anode LED, low level to turn on the led.
ledcWrite(chns[1], 255 - g);
ledcWrite(chns[2], 255 - b);

}
//***

5.7. Project 06: RGB LED 89

ESP32 Learning Kit

5.7.6 6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the RGB LED starts to display random colors.

5.8 Project 07: Flowing Water Light

5.8.1 1.Introduction

In our daily life, we can see many billboards composed of different colors of LED. They constantly change the light
(like water) to attract customers’ attention. In this project, we will use ESP32 to control 10 LEDs to achieve the effect
of flowing water.

5.8.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

Red LED*1 220 Resistor*1 Jumper Wire*2

90 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.8.3 3.Wiring Diagram

Note:

How to connect a LED

How to identify the 220 Five-band resistor

5.8. Project 07: Flowing Water Light 91

ESP32 Learning Kit

5.8.4 4.Test Code

This project is designed to make a flowing water lamp. Actions: First turn LED #1 ON, then turn it OFF. Then turn
LED #2 ON, and then turn it OFF. . . and repeat the same to all 10 LEDs until the last LED is turns OFF. This process
is repeated to achieve the“movements”of flowing water.

//**
/*
* Filename : Flowing Water Light
* Description : Using ten leds to demonstrate flowing lamp.
* Auther : http//www.keyestudio.com
*/
byte ledPins[] = {22, 21, 19, 18, 17, 16, 4, 0, 2, 15};
int ledCounts;

void setup() {
ledCounts = sizeof(ledPins);
for (int i = 0; i < ledCounts; i++) {
pinMode(ledPins[i], OUTPUT);

}
}

void loop() {
for (int i = 0; i < ledCounts; i++) {
digitalWrite(ledPins[i], HIGH);
delay(100);
digitalWrite(ledPins[i], LOW);

}
for (int i = ledCounts - 1; i > -1; i--) {
digitalWrite(ledPins[i], HIGH);
delay(100);
digitalWrite(ledPins[i], LOW);

}
}
//**

92 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.8.5 5.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that 10 LEDs will light up from left to right and then back from right to left.

5.9 Project 081-Digit Digital Tube

5.9.1 1.Introduction

A 1-Digit 7-Segment Display is an electronic display device that displays decimal numbers. It is widely used in digital
clocks, electronic meters, basic calculators and other electronic devices that display digital information.

Though they may not look modern enough, they are an alternative to more complex dot matrix displays and are easy
to use in limited light conditions and strong sunlight. In this project, we will use ESP32 to control 1-Digit 7-segment
display displays numbers.

5.9.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

1-Digit 7-Segment Display*1 220 Resistor*8 Jumper Wire*2

5.9. Project 081-Digit Digital Tube 93

ESP32 Learning Kit

5.9.3 3.Component Knowledge

1-Digit 7-Segment Display principle:

Digital tube display is a semiconductor light emitting device, its basic unit is a light-emitting diode (LED). The digital
tube display can be divided into 7-segment display and 8-segment display according to the number of segments. The
8-segment display has one more LED unit than the 7-segment display (used for decimal point display). Each segment
of the 7-segment display is a separate LED. According to the connection mode of the LED unit, the digital tube can be
divided into a common anode digital tube and a common cathode digital tube.

In the common cathode 7-segment display, all the cathodes (or negative electrodes) of the segmented LEDs are con-
nected together, so you should connect the common cathode to GND. To light up a segmented LED, you can set its
associated pin to“HIGH”.

In the common anode 7-segment display, the LED anodes (positive electrodes) of all segments are connected together,
so you should connect the common anode to“+5V”. To light up a segmented LED, you can set its associated pin
to“LOW”.

94 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

Each part of the digital tube is composed of an LED. So when you use it, you also need to use a current limiting resistor.
Otherwise, the LED will be damaged. In this experiment, we use an ordinary common cathode one-digit digital tube.
As we mentioned above, you should connect the common cathode to GND. To light up a segmented LED, you can set
its associated pin to“HIGH”.

5.9.4 4.Wiring Diagram

Note: The direction of the 7-segment display inserted into the breadboard is consistent with the wiring diagram, with
one more point in the lower right corner.

5.9. Project 081-Digit Digital Tube 95

ESP32 Learning Kit

5.9.5 5.Test Code

The digital display is divided into 7 segments, and the decimal point display is divided into 1 segment. When certain
numbers are displayed, the corresponding segment will be lit. For example, when the number 1 is displayed, segments
b and c will be turned on.

//**
/*
* Filename : 1-Digit Digital Tube
* Description : One Digit Tube displays numbers from 9 to 0.
* Auther : http//www.keyestudio.com
*/
// sets the IO PIN for every segment
int a=16; // digital PIN 16 for segment a
int b=4; // digital PIN 4 for segment b
int c=5; // digital PIN 5 for segment c
int d=18; // digital PIN 18 for segment d
int e=19; // digital PIN 19 for segment e
int f=22; // digital PIN 22 for segment f
int g=23; // digital PIN 23 for segment g
int dp=17; // digital PIN 17 for segment dp
void digital_0(void) // displays number 0
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,LOW);
digitalWrite(dp,LOW);
}
void digital_1(void) // displays number 1

(continues on next page)

96 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

{
digitalWrite(a,LOW);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,LOW);
digitalWrite(e,LOW);
digitalWrite(f,LOW);
digitalWrite(g,LOW);
digitalWrite(dp,LOW);
}
void digital_2(void) // displays number 2
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,LOW);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,LOW);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_3(void) // displays number 3
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(f,LOW);
digitalWrite(e,LOW);
digitalWrite(dp,LOW);
digitalWrite(g,HIGH);
}
void digital_4(void) // displays number 4
{
digitalWrite(a,LOW);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,LOW);
digitalWrite(e,LOW);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_5(void) // displays number 5
{
digitalWrite(a,HIGH);
digitalWrite(b,LOW);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,LOW);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);

(continues on next page)

5.9. Project 081-Digit Digital Tube 97

ESP32 Learning Kit

(continued from previous page)

digitalWrite(dp,LOW);
}
void digital_6(void) // displays number 6
{
digitalWrite(a,HIGH);
digitalWrite(b,LOW);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_7(void) // displays number 7
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,LOW);
digitalWrite(e,LOW);
digitalWrite(f,LOW);
digitalWrite(g,LOW);
digitalWrite(dp,LOW);
}
void digital_8(void) // displays number 8
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_9(void) // displays number 9
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,LOW);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void setup()
{
// initialize digital pin LED as an output.
pinMode(a, OUTPUT);
pinMode(b, OUTPUT);
pinMode(c, OUTPUT);

(continues on next page)

98 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

pinMode(d, OUTPUT);
pinMode(e, OUTPUT);
pinMode(f, OUTPUT);
pinMode(g, OUTPUT);
pinMode(dp, OUTPUT);

}
void loop()
{
while(1)
{
digital_9();// displays number 9
delay(1000); // waits a sencond
digital_8();// displays number 8
delay(1000); // waits a sencond
digital_7();// displays number 7
delay(1000); // waits a sencond
digital_6();// displays number 6
delay(1000); // waits a sencond
digital_5();// displays number 5
delay(1000); // waits a sencond
digital_4();// displays number 4
delay(1000); // waits a sencond
digital_3();// displays number 3
delay(1000); // waits a sencond
digital_2();// displays number 2
delay(1000); // waits a sencond
digital_1();// displays number 1
delay(1000);// waits a sencond
digital_0();// displays number 0
delay(1000);// waits a sencond
}}
//**

5.9.6 6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the 1-Digit 7-Segment Display will display numbers from 9 to 0.

5.10 Project 094-Digit Digital Tube

5.10.1 1.Introduction

A 4-digit 7-segment display is a very practical display device and it is used for devices such as electronic clocks, score
counters and the number of people in the park. Because of the low price, easy to use, more and more projects will use
4 Digit 7-segment display. In this project, we use ESP32 to control 4-digit 7-segment display to display digits.

5.10. Project 094-Digit Digital Tube 99

ESP32 Learning Kit

5.10.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

4-digit 7-segment display Module*1 220 Resistor*8 Jumper Wire*2

5.10.3 3.Component Knowledge

4-digit 7-segment display

It is a device with common cathode and anode, its display principle is similar to the 1-Digit digital tube display. They
all have eight GPIO ports to control the digital tube display, that is 8 leds. However, here is 4-digit, so it needs four
GPIO ports to control the bit selection end. Our 4 - digit digital tube is common cathode.

The following figure shows the pin diagram of the 4-digit digital tube. G1, G2, G3 and G4 are the control pins.

100 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

Schematic Diagram

5.10. Project 094-Digit Digital Tube 101

ESP32 Learning Kit

5.10.4 4.Wiring Diagram

5.10.5 5.Test Code

//**
/*
* Filename : 4-Digit Digital Tube
* Description : Four Digit Tube displays numbers from 0 to 9999.
* Auther : http//www.keyestudio.com
*/
#define d_a 18 //Define nixie tube a to pin 18
#define d_b 13
#define d_c 2
#define d_d 16
#define d_e 17
#define d_f 19
#define d_g 0
#define d_dp 4

#define G1 21 //Define the first set of nixtube G1 to pin 21
#define G2 22
#define G3 14
#define G4 15

//Nixie tube 0-F code value
(continues on next page)

102 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

unsigned char num[17][8] =
{
//a b c d e f g dp
{1, 1, 1, 1, 1, 1, 0, 0}, //0
{0, 1, 1, 0, 0, 0, 0, 0}, //1
{1, 1, 0, 1, 1, 0, 1, 0}, //2
{1, 1, 1, 1, 0, 0, 1, 0}, //3
{0, 1, 1, 0, 0, 1, 1, 0}, //4
{1, 0, 1, 1, 0, 1, 1, 0}, //5
{1, 0, 1, 1, 1, 1, 1, 0}, //6
{1, 1, 1, 0, 0, 0, 0, 0}, //7
{1, 1, 1, 1, 1, 1, 1, 0}, //8
{1, 1, 1, 1, 0, 1, 1, 0}, //9
{1, 1, 1, 0, 1, 1, 1, 1}, //A
{1, 1, 1, 1, 1, 1, 1, 1}, //B
{1, 0, 0, 1, 1, 1, 0, 1}, //C
{1, 1, 1, 1, 1, 1, 0, 1}, //D
{1, 0, 0, 1, 1, 1, 1, 1}, //E
{1, 0, 0, 0, 1, 1, 1, 1}, //F
{0, 0, 0, 0, 0, 0, 0, 1}, //.

};

void setup()
{
pinMode(d_a,OUTPUT); //Set to output pin
pinMode(d_b,OUTPUT);
pinMode(d_c,OUTPUT);
pinMode(d_d,OUTPUT);
pinMode(d_e,OUTPUT);
pinMode(d_f,OUTPUT);
pinMode(d_g,OUTPUT);
pinMode(d_dp,OUTPUT);

pinMode(G1,OUTPUT);
pinMode(G2,OUTPUT);
pinMode(G3,OUTPUT);
pinMode(G4,OUTPUT);

}

void loop()
{

//Start counting from 0 and gradually increase by 1 to 9999, repeating.
for(int l = 0;l < 10;l++)
{
for(int k = 0; k < 10;k++)
{
for(int j = 0; j < 10; j++)
{
for(int i = 0;i < 10;i++)
{
//125 flashes a second equals one second.

(continues on next page)

5.10. Project 094-Digit Digital Tube 103

ESP32 Learning Kit

(continued from previous page)

//1000/8=125
for(int q = 0;q<125;q++)
{
Display(1,l);//The first nixie tube shows the value of L.
delay(2);
Display(2,k);
delay(2);
Display(3,j);
delay(2);
Display(4,i);
delay(2);

}

}
}

}
}

}

//Display functions: g ranges from 1 to 4,num ranges from 0 to 9
void Display(unsigned char g,unsigned char n)
{
digitalWrite(d_a,LOW); //Remove the light
digitalWrite(d_b,LOW);
digitalWrite(d_c,LOW);
digitalWrite(d_d,LOW);
digitalWrite(d_e,LOW);
digitalWrite(d_f,LOW);
digitalWrite(d_g,LOW);
digitalWrite(d_dp,LOW);

switch(g) //Gate a choice
{
case 1:
digitalWrite(G1,LOW); //Choose the first digit
digitalWrite(G2,HIGH);
digitalWrite(G3,HIGH);
digitalWrite(G4,HIGH);
break;

case 2:
digitalWrite(G1,HIGH);
digitalWrite(G2,LOW); //Choose the second bit
digitalWrite(G3,HIGH);
digitalWrite(G4,HIGH);
break;

case 3:
digitalWrite(G1,HIGH);
digitalWrite(G2,HIGH);
digitalWrite(G3,LOW); //Choose the third bit
digitalWrite(G4,HIGH);
break;

case 4:

(continues on next page)

104 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

digitalWrite(G1,HIGH);
digitalWrite(G2,HIGH);
digitalWrite(G3,HIGH);
digitalWrite(G4,LOW); //Choose the fourth bit
break;

default:break;
}

digitalWrite(d_a,num[n][0]); //a Queries the code value table
digitalWrite(d_b,num[n][1]);
digitalWrite(d_c,num[n][2]);
digitalWrite(d_d,num[n][3]);
digitalWrite(d_e,num[n][4]);
digitalWrite(d_f,num[n][5]);
digitalWrite(d_g,num[n][6]);
digitalWrite(d_dp,num[n][7]);

}
//**

5.10.6 6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the 4-digit 7-segment display displays 0-9999and repeat these actions in an infinite loop.

5.11 Project 108×8 Dot-matrix Display

5.11.1 1.Introduction

Dot matrix display is an electronic digital display device that can display information on machine, clocks, public trans-
port departure indicators and many other devices.

In this project, we will use ESP32 to control 8x8 LED dot matrix to display digits.

5.11. Project 108×8 Dot-matrix Display 105

ESP32 Learning Kit

5.11.2 2.Components

ESP32*1 Breadboard*1 USB Cable*1

8*8 dot matrix module *1 220 Resistor*8 Jumper Wire*2

5.11.3 3.Component Knowledge

8*8 dot matrix module

The 8*8 dot matrix is composed of 64 LEDs, including row common anode and row common cathode. Our module is
row common anode, that is, each row has a line connecting the positive pole of the LED, and the column is connecting
the negative pole of the LED lamp, as shown in the following figure :

106 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.11.4 4.Wiring Diagram

5.11. Project 108×8 Dot-matrix Display 107

ESP32 Learning Kit

5.11.5 5.Test Code

//**
/*
* Filename : 8×8 Dot-matrix Display
* Description : 8×8 Dot-matrix displays numbers from 0 to 9.
* Auther : http//www.keyestudio.com
*/
int R[] = {14,26,4,27,19,16,18,17};
int C[] = {32,21,22,12,0,13,33,25};

unsigned char data_0[8][8] =
{
{0,0,1,1,1,0,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,0,1,1,1,0,0,0}
};

unsigned char data_1[8][8] =
{
{0,0,0,0,1,0,0,0},
{0,0,0,1,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,1,1,1,0,0}
};

unsigned char data_2[8][8] =
{
{0,0,1,1,1,0,0,0},
{0,1,0,0,0,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,1,0,0,0,0},
{0,0,1,0,0,0,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0}
};

unsigned char data_3[8][8] =
{
{0,0,1,1,1,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,1,1,1,1,0,0},

(continues on next page)

108 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

{0,0,0,0,0,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0}
};

unsigned char data_4[8][8] =
{
{0,1,0,0,0,0,0,0},
{0,1,0,0,1,0,0,0},
{0,1,0,0,1,0,0,0},
{0,1,1,1,1,1,1,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,0,0,0,0}
};

unsigned char data_5[8][8] =
{
{0,1,0,0,0,0,0,0},
{0,1,1,1,1,1,0,0},
{0,1,0,0,0,0,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,0,0,0,1,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0}
};

unsigned char data_6[8][8] =
{
{0,1,1,1,1,1,0,0},
{0,1,0,0,0,0,0,0},
{0,1,0,0,0,0,0,0},
{0,1,1,1,1,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0}
};

unsigned char data_7[8][8] =
{
{0,0,0,0,0,0,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,1,0,0,0,0},
{0,0,1,0,0,0,0,0},
{0,1,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0}

(continues on next page)

5.11. Project 108×8 Dot-matrix Display 109

ESP32 Learning Kit

(continued from previous page)

};

unsigned char data_8[8][8] =
{
{0,1,1,1,1,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,1,1,1,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0}
};

unsigned char data_9[8][8] =
{
{0,1,1,1,1,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,0,0,0,1,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0}
};

void Display(unsigned char dat[8][8])
{
for(int c = 0; c<8;c++)
{
digitalWrite(C[c],LOW);
for(int r = 0;r<8;r++)
{
digitalWrite(R[r],dat[r][c]);
}
delay(1);
Clear();
}
}

void Clear()
{
for(int i = 0;i<8;i++)
{
digitalWrite(R[i],LOW);
digitalWrite(C[i],HIGH);
}
}

void setup(){
for(int i = 0;i<8;i++)
{

(continues on next page)

110 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

pinMode(R[i],OUTPUT);
pinMode(C[i],OUTPUT);

}

}

void loop(){
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_0);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_1);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_2);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_3);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_4);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_5);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_6);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_7);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_8);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_9);

}
}
//**

5.11.6 6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the 8*8 dot matrix displays the numbers 0~9 respectively.

5.11. Project 108×8 Dot-matrix Display 111

ESP32 Learning Kit

5.12 Project 1174HC595N Control 8 LEDs

5.12.1 1.Introduction

In previous projects, we learned how to light up an LED.

With only 32 IO ports on ESP32, how do we light up a lot of leds? Sometimes it is possible to run out of pins on
the ESP32, and you need to extend it with the shift register.You can use the 74HC595N chip to control 8 outputs at a
time, taking up only a few pins on your microcontroller. In addition, you can also connect multiple registers together
to further expand the output.

In this project, we will use an ESP32a 74HC595 chip and LEDs to make a flowing water light to understand the function
of the 74HC595 chip.

5.12.2 2.Components

ESP32*1 Breadboard*1 74HC595N chip*1 Jumper Wires

220 Resistor*8 Red LED*8 USB Cable*1

5.12.3 3.Component Knowledge

74HC595N Chip:

The 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert the serial data of one
byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly. With this characteristic, the
74HC595 chip can be used to expand the IO ports of an ESP32. At least 3 ports are required to control the 8 ports of
the 74HC595 chip.

112 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

The ports of the 74HC595 chip are described as follows

Note: Note the orientation the 74HC595N chip is inserted.

5.12. Project 1174HC595N Control 8 LEDs 113

ESP32 Learning Kit

5.12.4 5.Test Code

//**
/*
* Filename : 74HC595N Control 8 LEDs
* Description : Use 74HC575N to drive ten leds to display the flowing light.
* Auther : http//www.keyestudio.com
*/
int dataPin = 14; // Pin connected to DS of 74HC595(Pin14)
int latchPin = 12; // Pin connected to ST_CP of 74HC595(Pin12)
int clockPin = 13; // Pin connected to SH_CP of 74HC595(Pin11)
void setup() {
// set pins to output
pinMode(latchPin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, OUTPUT);

}

void loop() {
// Define a one-byte variable to use the 8 bits to represent the state of 8 LEDs of␣

→˓LED bar graph.
// This variable is assigned to 0x01, that is binary 00000001, which indicates only␣

→˓one LED light on.
byte x = 0x01; // 0b 0000 0001
for (int j = 0; j < 8; j++) { // Let led light up from right to left

writeTo595(LSBFIRST, x);
x <<= 1; // make the variable move one bit to left once, then the bright LED move␣

→˓one step to the left once.
delay(50);

}
delay(100);
x = 0x80; //0b 1000 0000
for (int j = 0; j < 8; j++) { // Let led light up from left to right

writeTo595(LSBFIRST, x);
x >>= 1;

(continues on next page)

114 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

delay(50);
}
delay(100);

}
void writeTo595(int order, byte _data) {
// Output low level to latchPin
digitalWrite(latchPin, LOW);
// Send serial data to 74HC595
shiftOut(dataPin, clockPin, order, _data);
// Output high level to latchPin, and 74HC595 will update the data to the parallel␣

→˓output port.
digitalWrite(latchPin, HIGH);

}
//**

5.12.5 6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the 8 LEDs start flashing in flowing water mode.

5.13 Project 12Active Buzzer

5.13.1 1.Introduction

Active buzzer is a sound component that is widely used as a sound component for computersprintersalarmselectronic
toys and phonestimers etc. It has an internal vibration source, just by connecting to a 5V power supply, it can continu-
ously buzz.

In this project, we will use ESP32 to control the active buzzer to beep.

5.13.2 2.Components

ESP32*1 Breadboard*1 Active buzzer*1

NPN Transistor(S8050)*1 1k Resistor*1 Jumper Wires USB Cable*1

5.13. Project 12Active Buzzer 115

ESP32 Learning Kit

5.13.3 3.Component Knowledge

Active buzzer:

Active buzzer inside has a simple oscillator circuit, which can convert constant direct current into a certain frequency
pulse signal. Once active buzzer receives a high level, it will produce sound.

Passive buzzer is an internal without vibration source integrated electronic buzzer, it must be driven by 2k to 5k square
wave, rather than a DC signal.

The two buzzers are very similar in appearance, but one buzzer with a green circuit board is a passive buzzer, while
the other buzzer with black tape is an active buzzer.

Passive buzzers don’t have positive polarity, but active buzzers have. As shown below:

116 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

Transistor:

Because the buzzer requires such large current that GPIO of ESP32 output capability cannot meet the requirement, a
transistor of NPN type is needed here to amplify the current.

Transistor, the full name: semiconductor transistor, is a semiconductor device that controls current. Transistorcan be
used to amplify weak signal, or works as a switch. It has three electrodes(PINs): base (b), collector © and emitter (e).
When there is current passing between “be”, “ce” will allow several-fold current (transistor magnification) pass, at this
point, transistor works in the amplifying area. When current between “be” exceeds a certain value, “ce” will not allow
current to increase any longer, at this point, transistor works in the saturation area. Transistor has two types as shown
below: PNP and NPN,

PNP transistor NPN transistor

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

5.13. Project 12Active Buzzer 117

ESP32 Learning Kit

Based on the transistor’s characteristics, it is often used as a switch in digital circuits. As micro-controller’s capacity
to output current is very weak, we will use transistor to amplify current and drive large-current components.

When using NPN transistor to drive buzzer, we often adopt the following method. If GPIO outputs high level, current
will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs low level, no current
flows through R1, the transistor will not be conducted, and buzzer will not sound.

When using PNP transistor to drive buzzer, we often adopt the following method. If GPIO outputs low level, current
will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs high level, no
current flows through R1, the transistor will not be conducted, and buzzer will not sound.

5.13.4 4.Wiring Diagram

Note: The buzzer power supply in this circuit is 5V. On a 3.3V power supply, the buzzer can work, but it will reduce
the loudness.

118 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.13.5 5.Test Code

//**
/*
* Filename : Active Buzzer
* Description : Active buzzer beeps.
* Auther : http//www.keyestudio.com
*/
#define buzzerPin 15 //define buzzer pins

void setup ()
{
pinMode (buzzerPin, OUTPUT);

}
void loop ()
{
digitalWrite (buzzerPin, HIGH);
delay (500);
digitalWrite (buzzerPin, LOW);
delay (500);

}
//**

5.13.6 6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the active buzzer beeps.

5.14 Project 13Passive Buzzer

5.14.1 1.Introduction

In a previous project, we studied an active buzzer, which can only make a sound and may make you feel very
monotonous. In this project, we will learn a passive buzzer and use the ESP32 control it to work. Unlike the active
buzzer, the passive buzzer can emit sounds of different frequencies.

5.14. Project 13Passive Buzzer 119

ESP32 Learning Kit

5.14.2 2.Components

ESP32*1 Breadboard*1 Passive Buzzer *1

NPN Transistor(S8050)*1 1kResistor*1 Jumper Wires USB Cable*1

5.14.3 3.Component Knowledge

120 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

Passive buzzer:

A passive buzzer is an integrated electronic buzzer with no internal vibration source and it has to be driven by 2K-5K
square waves, not DC signals.

The two buzzers are very similar in appearance, but one buzzer with a green circuit board is a passive buzzer and the
other buzzer with black tape is an active buzzer.

Passive buzzers cannot distinguish between positive polarity while active buzzers can.

Transistor:

Please refer to Project 12.

5.14.4 4.Wiring Diagram

5.14.5 5.Test Code

//**
/*
* Filename : Passive Buzzer
* Description : Passive Buzzer sounds the alarm.
* Auther : http//www.keyestudio.com
*/
#define LEDC_CHANNEL_0 0

(continues on next page)

5.14. Project 13Passive Buzzer 121

ESP32 Learning Kit

(continued from previous page)

// LEDC timer uses 13 bit accuracy

#define LEDC_TIMER_13_BIT 13

// Define tool I/O ports

#define BUZZER_PIN 15

//Create a musical melody list, Super Mario

int melody[] = {330, 330, 330, 262, 330, 392, 196, 262, 196, 165, 220, 247, 233, 220,␣
→˓196, 330, 392, 440, 349, 392, 330, 262, 294, 247, 262, 196, 165, 220, 247, 233, 220,␣
→˓196, 330, 392,440, 349, 392, 330, 262, 294, 247, 392, 370, 330, 311, 330, 208, 220,␣
→˓262, 220, 262,

294, 392, 370, 330, 311, 330, 523, 523, 523, 392, 370, 330, 311, 330, 208, 220, 262,220,␣
→˓262, 294, 311, 294, 262, 262, 262, 262, 262, 294, 330, 262, 220, 196, 262, 262,262,␣
→˓262, 294, 330, 262, 262, 262, 262, 294, 330, 262, 220, 196};

//Create a list of tone durations

int noteDurations[] = {8,4,4,8,4,2,2,3,3,3,4,4,8,4,8,8,8,4,8,4,3,8,8,3,3,3,3,4,4,8,4,8,8,
→˓8,4,8,4,3,8,8,2,8,8,8,4,4,8,8,4,8,8,3,8,8,8,4,4,4,8,2,8,8,8,4,4,8,8,4,8,8,3,3,3,1,8,4,
→˓4,8,4,8,4,8,2,8,4,4,8,4,1,8,4,4,8,4,8,4,8,2};
void setup() {
pinMode(BUZZER_PIN, OUTPUT); // Set the buzzer to output mode
}

void loop() {

int noteDuration; //Create a variable of noteDuration

for (int i = 0; i < sizeof(noteDurations); ++i)

{
noteDuration = 800/noteDurations[i];

ledcSetup(LEDC_CHANNEL_0, melody[i]*2, LEDC_TIMER_13_BIT);

ledcAttachPin(BUZZER_PIN, LEDC_CHANNEL_0);

ledcWrite(LEDC_CHANNEL_0, 50);

delay(noteDuration * 1.30); //delay
}

}
//**

122 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.14.6 6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the passive buzzer plays music.

5.15 Project 14: Mini Table Lamp

5.15.1 1.Introduction

Do you know that the ESP32 can light up an LED when you press a button? In this project, we will use a ESP32a
button switch and an LED to make a mini table lamp.

5.15.2 2.Components

ESP32*1 Breadboard*1 Button*1 Button Cap*1

10K Resistor*1 Red LED*1 22 Resistor*1 USB Cable*1 Jumper Wires

5.15.3 3.Component Knowledge

5.15. Project 14: Mini Table Lamp 123

ESP32 Learning Kit

Button:

A button can control the circuit on and off, the button is plugged into a circuit, the circuit is disconnected when the
button is not pressed. The circuit works when you press the button, but breaks again when you release it.

Why does it only work when you press it? It starts from the internal structure of the button, which don’t allow current
to travel from one end of the button to the other before it is pressed; When pressed, a metal strip inside the button
connects the two sides to allow electricity to pass through.

The internal structure of the button is shown in the figure

.

Before the button is pressed, 1 and 2 are on, 3 and 4 are also on, but 1, 3 or 1, 4 or 2, 3 or 2, 4 are off (not working).
Only when the button is pressed, 1, 3 or 1, 4 or 2, 3 or 2, 4 are on.

The button switch is one of the most commonly used components in circuit design.

Schematic diagram of the button:

What is button [shake](javascript:;)?

We think of the switch circuit as “press the button and turn it on immediately”, “press it again and turn it off immedi-
ately”. In fact, this is not the case.

The button usually uses a mechanical elastic switch, and the mechanical elastic switch will produce a series of
[shake](javascript:;) due to the elastic action at the moment when the mechanical contact is opened and closed (usually
about 10ms).

As a result, the button switch will not immediately and stably turn on the circuit when it is closed, and it will not be
completely and instantaneously disconnected when it is turned off.

124 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

How to eliminate the [shake](javascript:;)?

There are two common methods, namely fix [shake](javascript:;) in the software and hardware. We only discuss the
[shake](javascript:;) removal in the software.

We already know that the [shake](javascript:;) time generated by elasticity is about 10ms, and the delay command can
be used to delay the execution time of the command to achieve the effect of [shake](javascript:;) removal.

Therefore, we delay 0.02s in the code to achieve the key anti-shake function.

5.15. Project 14: Mini Table Lamp 125

ESP32 Learning Kit

5.15.4 4.Wiring Diagram

Note:

How to connect the LED

How to identify the 220 5-band resistor and 10K 5-band resistor

126 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.15.5 5.Test code

//**
/*
* Filename : Mini Table Lamp
* Description : Make a table lamp.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED 4
#define PIN_BUTTON 15
bool ledState = false;

void setup() {
// initialize digital pin PIN_LED as an output.
pinMode(PIN_LED, OUTPUT);
pinMode(PIN_BUTTON, INPUT);

}

// the loop function runs over and over again forever
void loop() {
if (digitalRead(PIN_BUTTON) == LOW) {

(continues on next page)

5.15. Project 14: Mini Table Lamp 127

ESP32 Learning Kit

(continued from previous page)

delay(20);
if (digitalRead(PIN_BUTTON) == LOW) {

reverseGPIO(PIN_LED);
}
while (digitalRead(PIN_BUTTON) == LOW);

}
}

void reverseGPIO(int pin) {
ledState = !ledState;
digitalWrite(pin, ledState);

}
//**

5.15.6 6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that press the push button switch, the LED turns on; When it is released, the LED is still on. Press it again,
and the LED turns off. When it is released, the LED stays off. Doesn’t it look like a mini table lamp?

5.16 Project 15Tilt and LED

5.16.1 1.Introduction

The ancients without electronic clock, so the hourglass are invented to measure time. The hourglass has a large capacity
on both sides, and which is filled with fine sand on one side.

What’s more, there is a small channel in the middle, which can make the hourglass stand upright , the side with fine
sand is on the top. due to the effect of gravity,the fine sand will flow down through the channel to the other side of the
hourglass.

When the sand reaches the bottom, turn it upside down and record the number of times it has gone through the hourglass,
therefore, the next day we can know the approximate time of the day by it.

In this project, we will use ESP32 to control the tilt switch and LED lights to simulate an hourglass to make an electronic
hourglass.

128 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.16.2 2.Components

ESP32*1 Tilt Switch*1 Red LED*4 10K Resistor*1

Breadboard*1 220 Resistor*4 USB Cable*1 Jumper Wires

5.16.3 3.Component Knowledge

Tilt switch is also called digital switch. Inside is a metal ball that can roll.

The principle of rolling the metal ball to contact with the conductive plate at the bottom, which is used to control the on
and off of the circuit. When it is a rolling ball tilt sensing switch with single directional trigger, the tilt sensor is tilted
toward the trigger end (two gold-plated pin ends), the tilt switch is in a closed circuit and the voltage at the analog port
is about 5V(binary number is 1023).

In this way, the LED will light up. When the tilting switch is in horizontal position or tilting to the other end, the tilting
switch is in open state the voltage of the analog port is about 0V (binary number is 0), the LED will turn off. In the

5.16. Project 15Tilt and LED 129

ESP32 Learning Kit

program, we judge the state of the switch based on whether the voltage value of the analog port is greater than 2.5V
(binary number is 512).

The internal structure of the tilt switch is used here to illustrate how it works, as shown below:

5.16.4 4.Wiring Diagram

130 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

Note:

How to connect the LED

How to identify the 220 5-band resistor and 10K 5-band resistor

5.16. Project 15Tilt and LED 131

ESP32 Learning Kit

5.16.5 5.Test Code

//**
/*
* Filename : Tilt And LED
* Description : Tilt switches and four leds to simulate an hourglass.
* Auther : http//www.keyestudio.com
*/
#define SWITCH_PIN 15 // the tilt switch is connected to Pin15
byte switch_state = 0;
void setup()
{

for(int i=16;i<20;i++)
{

pinMode(i, OUTPUT);
}
pinMode(SWITCH_PIN, INPUT);

for(int i=16;i<20;i++)
{
digitalWrite(i,0);

}
Serial.begin(9600);

}
void loop()
{
switch_state = digitalRead(SWITCH_PIN);
Serial.println(switch_state);
if (switch_state == 0)
{
for(int i=16;i<20;i++)
{
digitalWrite(i,1);
delay(500);

}
}
if (switch_state == 1)

{
for(int i=19;i>15;i--)
{
digitalWrite(i,0);
delay(500);

}
}

}
//**

132 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.16.6 6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that when you tilt the breadboard to an angle, the LEDs will light up one by one. When you turn the breadboard
to the original angle, the LEDs will turn off one by one. Like the hourglass, the sand will leak out over time.

5.17 Project 16: I2C 128×32 LCD

5.17.1 1.Introduction

In everyday life, we can do all kinds of experiments with the display module and also DIY a variety of small objects.

For example, you can make a temperature meter with a temperature sensor and display, or make a distance meter with
an ultrasonic module and display.

In this project, we will use the LCD_128X32_DOT module as the display and connect it to the ESP32, which will be
used to control the LCD_128X32_DOT display to display various English words, common symbols and numbers.

5.17.2 2.Components

ESP32*1 Breadboard*1

LCD_128X32_DOT*1 M-F Dupont Wires USB Cable*1

5.17. Project 16: I2C 128×32 LCD 133

ESP32 Learning Kit

5.17.3 3.Component Knowledge

LCD_128X32_DOT:

It is an LCD module with 128*32 pixels and its driver chip is ST7567A.

The module uses the IIC communication mode, while the code contains a library of all alphabets and common symbols
that can be called directly. When using, we can also set it in the code so that the English letters and symbols show
different text sizes.

To make it easy to set up the pattern display, we also provide a mold capture software that converts a specific pattern
into control code and then copies it directly into the test code for use.

134 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

Schematic diagram of LCD_128X32_DOT

Features:

• Pixel: 128*32 character

• Operating voltage(chip)4.5V to 5.5V

• Operating current100mA (5.0V)

• Optimal operating voltage(module):5.0V

5.17. Project 16: I2C 128×32 LCD 135

ESP32 Learning Kit

5.17.4 4.Wiring Diagram

5.17.5 5.Adding the lcd128_32_io library

This code uses a library named “lcd128_32_io”, if you haven’t installed it yet, please do so before learning. The steps
to add third-party libraries are as follows:

Open the Arduino IDEclick “Sketch”→“Include Library”→“Add .ZIP Library. . . ”.

Click on the link to download the library fileArduino C “lcd128_32_io.h” Librarie

Select the LCD_128X32.ZIP file and then click“Open”.

136 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.17.6 6.Test Code

//**
/*
* Filename : LCD 128*32
* Description : LCD 128*32 display string
* Auther : http//www.keyestudio.com
*/
#include "lcd128_32_io.h"

//Create lCD128 *32 pinsda--->21 scl--->22
lcd lcd(21, 22);

void setup() {
lcd.Init(); //initialize
lcd.Clear(); //clear

(continues on next page)

5.17. Project 16: I2C 128×32 LCD 137

ESP32 Learning Kit

(continued from previous page)

}

void loop() {
lcd.Cursor(0, 4); //Set display position
lcd.Display("KEYESTUDIO"); //Setting the display
lcd.Cursor(1, 0);
lcd.Display("ABCDEFGHIJKLMNOPQR");
lcd.Cursor(2, 0);
lcd.Display("123456789+-*/<>=$@");
lcd.Cursor(3, 0);
lcd.Display("%^&(){}:;'|?,.~\\[]");

}
//**

5.17.7 7.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you will
see that the 128X32LCD module display will show“KEYESTUDIO”at the first line“ABCDEFGHIJKLMNOPQR”will
be displayed at the second line“123456789±*/<>=$@”will be shown at the third line and“%^&(){}:;’|?,.~\[]”will be
displayed at the fourth line.

5.18 Project 17Small Fan

5.18.1 1.Introduction

In hot summer, we need electric fans to cool us down, so in this project, we will use the ESP32 to control a DC motor
and small fan blades to make a small electric fan.

138 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.18.2 2.Components

ESP32*1 Breadboard*1 6 AA Battery Holder*1 Breadboard Power Module*1

AA Battery(Self-prepared)*6 Fan*1 DC Motor*1 NPN Transistor (S8050)*1

PNP Transistor (S8550)*1 1K Resistor*1 Jumper Wire Diode*1

USB Ca-
ble*1

5.18.3 3.Component Knowledge

Keyestudio Breadboard Power Supply Module

Introduction

This breadboard power supply module is compatible with 5V and 3.3V, which can be applied to MB102 breadboard.
The module contains two channels of independent control, powered by the USB all the way.

The output voltage is constant for the DC5V, and another way is powered by DC 7-12V, output controlled by the slide
switch, respectively for DC5V and DC3.3V.

If the other power supply is DC 7-12v, when the slide switch is switched to +5V, the output voltages of the left and
right lines of the module are DC 5V. When the slide switch is switched to +3V, the output voltage of the USB power
supply terminal of the module is DC5V , and the output voltage of the DC 7-12V power supply terminal of the other
power supply is DC3.3V.

5.18. Project 17Small Fan 139

ESP32 Learning Kit

Specification

• Applied to MB102 breadboard

• Input voltageDC 7-12V or powered by USB

• Output voltage3.3V or 5V

• Max output current<700mA

• Up and down two channels of independent control, one of which can be switched to 3.3V or 5V

• Comes with two sets of DC output pins, easy for external use

5.18.4 4.Wiring Diagram 1

(Note: Connect the wires and then install a small fan blade on the DC motor.)

140 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.18.5 5. Test Code

//**
/*
* Filename : Small_Fan
* Description : S8050 triode drives the motor working
* Auther : http//www.keyestudio.com
*/

void setup() {

pinMode(15, OUTPUT); // Initialize pin 15 as output.
}

void loop() {
digitalWrite(15, HIGH); // Turn on the motor (HIGH means HIGH level)
delay(4000); // Delay 4 seconds
digitalWrite(15, LOW); // Reduce the voltage and turn off the motor
delay(2000); // Delay 2 seconds

}
//**

5.18.6 6.Test Result 1

Upload the code to the ESP32 and power up. The motor rotates for 4s, stops for 2s, in loop way.

5.18.7 7.Wiring Diagram 2

We use the S8550 PNP transistor to control the motor.

5.18. Project 17Small Fan 141

ESP32 Learning Kit

Note: wire up and connect a fan on the motor.

5.18.8 8.Test Code 2

//**
/*
* Filename : Small_Fan
* Description : S8550 triode drives the motor working
* Auther : http//www.keyestudio.com
*/

void setup() {

pinMode(15, OUTPUT); // Initialize pin 15 as output.
}

void loop() {
digitalWrite(15, LOW); // Turn on the motor (LOW means LOW level)
delay(4000); // Delay 4 seconds
digitalWrite(15, HIGH); // Raise the voltage and turn off the motor
delay(2000); // Delay 2 seconds

}
(continues on next page)

142 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

//**

5.18.9 9.Test Result 2

Upload the code to the ESP32 and power up. The motor rotates for 4s, stops for 2s, in loop way.

5.19 Project 18Dimming Light

5.19.1 1.Introduction

A potentiometer is a three-terminal resistor with sliding or rotating contacts that forms an adjustable voltage divider.
It works by changing the position of the sliding contacts across a uniform resistance.

In the potentiometer, the entire input voltage is applied across the whole length of the resistor, and the output voltage
is the voltage drop between the fixed and sliding contact.

In this project, we will learn how to use ESP32 to read the values of the potentiometer, and make a dimming lamp with
LED.

5.19.2 2.Components

ESP32*1 Breadboard*1 Potentiometer*1 Red LED*1

220Resistor*1 Jumper Wires USB Cable*1

5.19.3 3.Component Knowledge

5.19. Project 18Dimming Light 143

ESP32 Learning Kit

Adjustable potentiometer:

It is a kind of resistor and an analog electronic component, which has two states of 0 and 1(high level and low level).
The analog quantity is different, its data state presents a linear state such as 1 ~ 1024.

ADC :

An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or binary form
consisting of 1s and 0s.

The range of our ADC on ESP32 is 12 bits, that means the resolution is 2^12=4096, and it represents a range (at 3.3V)
will be divided equally to 4096 parts. The rage of analog values corresponds to ADC values. So the more bits the ADC
has, the denser the partition of analog will be and the greater the precision of the resulting conversion.

Subsection 1: the analog in rang of 0V—3.3/4095 V corresponds to digital 0;

Subsection 2: the analog in rang of 3.3/4095 V—2*3.3 /4095V corresponds to digital 1;

. . .

The following analog will be divided accordingly.

The conversion formula is as follows:

DAC

The reversing of this process requires a DAC, Digital-to-Analog Converter. The digital I/O port can output high level
and low level (0 or 1), but cannot output an intermediate voltage value. This is where a DAC is useful. ESP32 has two
DAC output pins with 8-bit accuracy, GPIO25 and GPIO26, which can divide VCC (here is 3.3V) into 2^8=256 parts.

For example, when the digital quantity is 1, the output voltage value is 3.3/256 *1 V, and when the digital quantity is
128, the output voltage value is 3.3/256 *128=1.65V, the higher the accuracy of DAC, the higher the accuracy of output
voltage value will be.

The conversion formula is as follows:

144 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

ADC on ESP32

ESP32 has 16 pins can be used to measure analog signals. GPIO pin sequence number and analog pin definition are
shown in the following table

ESP32 has two 8-bit digital analog converters to be connected to GPIO25 and GPIO26 pins, respectively, and it is
immutable. As shown in the following table

The DAC pin number is already defined in ESP32’s code base; for example, you can replace GPIO25 with DAC1 in
the code.

Read the ADC value, DAC value and voltage value of the potentiometer.

We connect the potentiometer to the analog IO port of ESP32 to read the ADC value, DAC value and voltage value of
the potentiometer, please refer to the wiring diagram below

//**
/*
* Filename : Read Potentiometer Analog Value
* Description : Basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the Potentiometer

void setup() {
Serial.begin(115200);

}
(continues on next page)

5.19. Project 18Dimming Light 145

ESP32 Learning Kit

(continued from previous page)

//In loop()the analogRead() function is used to obtain the ADC value,
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You will see that the serial monitor window will print out the ADC
value, DAC value and voltage value of the potentiometer.

When turning the potentiometer handle, the ADC value, DAC value and voltage value will change. As shown below:

146 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.19.4 4.Wiring diagram of the dimming lamp

In the previous step, we read the ADC value, DAC value and voltage value of the potentiometer.

Now we need to convert the ADC value of the potentiometer into the brightness of the LED to make a lamp that can
adjust the brightness.The wiring diagram is as follow:

5.19.5 5.Test Code

//**
/*
* Filename : Dimming Light
* Description : Controlling the brightness of LED by potentiometer.
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the potentiometer
#define PIN_LED 15 // the pin of the LED
#define CHAN 0
void setup() {
ledcSetup(CHAN, 1000, 12);
ledcAttachPin(PIN_LED, CHAN);

}

void loop() {
int adcVal = analogRead(PIN_ANALOG_IN); //read adc

(continues on next page)

5.19. Project 18Dimming Light 147

ESP32 Learning Kit

(continued from previous page)

int pwmVal = adcVal; // adcVal re-map to pwmVal
ledcWrite(CHAN, pwmVal); // set the pulse width.
delay(10);

}
//**

5.19.6 6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that turn the potentiometer handle and the brightness of the LED will change accordingly.

5.20 Project 19Flame Alarm

5.20.1 1.Introduction

Fire is a terrible disaster and fire alarm systems are very useful in houses, commercial buildings and factories.

In this project, we will use ESP32 to control a flame sensor, a buzzer and a LED to simulate fire alarm devices. This is
a meaningful maker activity.

148 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.20.2 2.Components

ESP32*1 Breadboard*1 Red LED*1 Active Buzzer*1

Flame Sensor*1 220 Resistor*1 10KResistor*1 Jumper Wires

NPN Transistor(S8050)*1 1k Resistor*1 USB Cable*1

5.20.3 3.Component Knowledge

The flame emits a certain amount IR light that is invisible to the human eye, but our flame sensor can detect it and alert
a microcontroller (such as ESP32) that a fire has been detected.

It has a specially designed infrared receiver tube to detect the flame and then convert the flame brightness into a
fluctuating level signal. The short pin of the receiving triode is negative pole and the other long pin is positive pole.
We should connect the short pin (negative) to 5V and the long pin (positive) to the analog pin, a resistor and GND. As
shown in the figure below

5.20. Project 19Flame Alarm 149

ESP32 Learning Kit

Note:

Since vulnerable to radio frequency radiation and temperature changes, the flame sensor should be kept away from heat
sources like radiators, heaters and air conditioners, as well as direct irradiation of sunlight, headlights and incandescent
light.

5.20.4 4. Read the ADC value, DAC value and voltage value of the flame sensor

We first use a simple code to read the ADC value, DAC value and voltage value of the flame sensor and print them out.
Please refer to the wiring diagram below

150 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

//**
/*
* Filename : Read Analog Value Of Flame Sensor
* Description : Basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the Flame sensor

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value,
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;

(continues on next page)

5.20. Project 19Flame Alarm 151

ESP32 Learning Kit

(continued from previous page)

Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣
→˓voltage);
delay(200);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200. You will see that the serial monitor window will print out the ADC
value, DAC value and voltage value of the flame sensor.

When the sensor is closed to fire, the ADC value, DAC value and voltage value will get greater. Conversely, the ADC
value, DAC value and voltage value decrease.

5.20.5 5.Wiring diagram of the flame alarm

Next, we will use a flame sensor, a buzzer, and a LED to make an interesting project, that is flame alarm. When flame
is detected, the LED flashes and the buzzer alarms.

152 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.20.6 6.Test Code

Note the threshold of 500 in the code can be reset as required)

//**
/*
* Filename : Flame Alarm
* Description : Controlling the buzzer and LED by flame sensor.
* Auther : http//www.keyestudio.com
*/
#define PIN_ADC0 36 //the pin of the flame sensor
#define PIN_LED 15 // the pin of the LED
#define PIN_BUZZER 4 // the pin of the buzzer

void setup() {
pinMode(PIN_LED, OUTPUT);
pinMode(PIN_BUZZER, OUTPUT);
pinMode(PIN_ADC0, INPUT);

}

void loop() {
int adcVal = analogRead(PIN_ADC0); //read the ADC value of flame sensor
if (adcVal >= 500) {
digitalWrite (PIN_BUZZER, HIGH); //turn on buzzer
digitalWrite(PIN_LED, HIGH); // turn on LED

(continues on next page)

5.20. Project 19Flame Alarm 153

ESP32 Learning Kit

(continued from previous page)

delay(500); // wait a second.
digitalWrite (PIN_BUZZER, LOW);
digitalWrite(PIN_LED, LOW); // turn off LED
delay(500); // wait a second

}
else
{

digitalWrite(PIN_LED, LOW); //turn off LED
digitalWrite (PIN_BUZZER, LOW); //turn off buzzer

}
}
//**

5.20.7 7.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that when the flame sensor detects the flame, the LED will flash and the buzzer will alarm; otherwise, the LED
does not light up and the buzzer does not sound.

5.21 Project 20Night Lamp

5.21.1 1.Introduction

Sensors or components are ubiquitous in our daily life. For example, some public street lamps will automatically turn
on at night and turn off during the day.

Why? In fact, this make use of a photosensitive element that senses the intensity of external ambient light. When the
outdoor brightness decreases at night, the street lights will turn on automatically; In the daytime, the street lights will
automatically turn off.

The principle of which is very simple, In this Project, we use a ESP32 to control a LED to achieve the effect of the
street light.

5.21.2 2.Components

ESP32*1 Breadboard*1 Red LED*1 10KResistor*1

Photoresistor*1 220Resistor*1 Jumper Wires USB Cable*1

154 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.21.3 3.Component Knowledge

Photoresistor :

It is a kind of photosensitive resistance, its principle is that the photoresistor surface receives brightness (light) to reduce
the resistance, the resistance value will change with the detected intensity of the ambient light . With this characteristic,
we can use the photosensitive resistance to detect the light intensity.

Photosensitive resistance and its electronic symbol are as follows

The following circuit is used to detect changes in resistance values of photoresistors

5.21. Project 20Night Lamp 155

ESP32 Learning Kit

In the circuit above, when the resistance of the photoresistor changes due to the change of light intensity, the voltage
between the photoresistor and resistance R2 will also change.

Thus, the intensity of light can be obtained by measuring this voltage.

5.21.4 4.Read the ADC value, DAC value and voltage value of the photoresistor

We first use a simple code to read the ADC value, DAC value and voltage value of the photoresistor and print them out.
Please refer to the following wiring diagram

156 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

//**
/*
* Filename : Read Photosensitive Analog Value
* Description : Basic usage of ADC
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the photosensitive sensor

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value,
//and then the map() function is used to convert the value into an 8-bit precision DAC␣
→˓value.
//The input and output voltage are calculated according to the previous formula,
//and the information is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
(continues on next page)

5.21. Project 20Night Lamp 157

ESP32 Learning Kit

(continued from previous page)

delay(200);
}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200.

You will see that the serial monitor window will print out the ADC valueDAC value and voltage value of the photore-
sistor. When the light intensity around the photoresistor is gradually reduced, the ADC value, DAC value and voltage
value will gradually increase. On the contrary, the ADC value, DAC value and voltage value decrease gradually.

5.21.5 5.Wiring diagram of the light-controlled lamp

We made a small dimming lamp in the front, now we will make a light controlled lamp. The principle is the same, that
is, the ESP32 takes the ADC value of the sensor, and then adjusts the brightness of the LED.

158 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.21.6 6.Test Code

//**
/*
* Filename : Night Lamp
* Description : Controlling the brightness of LED by photosensitive sensor.
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 // the pin of the photosensitive sensor
#define PIN_LED 15 // the pin of the LED
#define CHAN 0
#define LIGHT_MIN 372
#define LIGHT_MAX 2048
void setup() {
ledcSetup(CHAN, 1000, 12);
ledcAttachPin(PIN_LED, CHAN);

}

void loop() {
int adcVal = analogRead(PIN_ANALOG_IN); //read adc
int pwmVal = map(constrain(adcVal, LIGHT_MIN, LIGHT_MAX), LIGHT_MIN, LIGHT_MAX, 0,␣

→˓4095); // adcVal re-map to pwmVal
ledcWrite(CHAN, pwmVal); // set the pulse width.
delay(10);

}
(continues on next page)

5.21. Project 20Night Lamp 159

ESP32 Learning Kit

(continued from previous page)

//**

5.21.7 7.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that when the intensity of light around the photoresistor is reduced, the LED will be bright, on the contrary,
the LED will be dim.

5.22 Project 21: Temperature Instrument

5.22.1 1.Introduction

Thermistor is a kind of resistor whose resistance depends on temperature changes, which is widely used in gardening,
home alarm systems and other devices.

Therefore, we can use the features to make a temperature instrument.

5.22.2 2.Components

ESP32*1 Breadboard*1 Thermistor*1 10KResistor*1

M-F Dupont Wires LCD 128X32 DOT*1 Jumper Wires USB Cable*1

5.22.3 3.Component Knowledge

Thermistor: It is a temperature sensitive resistor.

When it senses a change in temperature, the resistance of the thermistor will change. We can take advantage of this
characteristic to detect temperature intensity. The thermistor and its electronic symbol are shown below:

160 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

The relationship between resistance and temperature of the thermistor is

Rt is the thermistor resistance under T2 temperature;

R is the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of e;

B is temperature index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15 + Celsius temperature.

Parameters : B=3950, R=10k, T1=25.

The circuit connection method of the thermistor is similar to the photoresistor, as shown below

5.22. Project 21: Temperature Instrument 161

ESP32 Learning Kit

We can use the value measured by the ADC converter to obtain the resistance of thermistor, and then we can use the
formula to obtain the temperature value.

Therefore, the temperature formula can be derived as:

162 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.22.4 4.Read the value of the Thermistor

First we will learn the thermistor to read the current ADC value, voltage value and temperature value and print them
out. Please connect the wirings according to the wiring diagram below

//**
/*
* Filename : Thermomter
* Description : Making a thermometer by thermistor.
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36
void setup() {
Serial.begin(115200);

}

void loop() {
int adcValue = analogRead(PIN_ANALOG_IN); //read ADC pin
double voltage = (float)adcValue / 4095.0 * 3.3; // calculate voltage
double Rt = 10 * voltage / (3.3 - voltage); //calculate resistance␣

→˓value of thermistor
double tempK = 1 / (1 / (273.15 + 25) + log(Rt / 10) / 3950.0); //calculate␣

(continues on next page)

5.22. Project 21: Temperature Instrument 163

ESP32 Learning Kit

(continued from previous page)

→˓temperature (Kelvin)
double tempC = tempK - 273.15; //calculate␣

→˓temperature (Celsius)
Serial.printf("ADC value : %d,\tVoltage : %.2fV, \tTemperature : %.2fC\n", adcValue,␣

→˓voltage, tempC);
delay(1000);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200.

You will see that the monitor prints out the thermistor’s current ADC value, voltage value and temperature value. Try
pinching the thermistor with your index finger and thumb (don’t touch wires) for a while, and you will see the temper-
ature increasing.

164 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.22.5 5.Wiring diagram of the temperature instrument

5.22.6 6.Adding the lcd128_32_io library

Open the Arduino IDEclick “Sketch”→“Include Library”→“Add .ZIP Library. . . ”.

In the pop-up window, find the file named “2. Windows System\2. C_Tutorial\3. Libraries\LCD_128X32.ZIP”,
which locates in this directory. Select the LCD_128X32.ZIP file and then click “Open”.

5.22. Project 21: Temperature Instrument 165

ESP32 Learning Kit

5.22.7 7.Test Code

//**
/*
* Filename : Temperature Instrument
* Description : LCD displays the temperature of thermistor.
* Auther : http//www.keyestudio.com
*/
#include "lcd128_32_io.h"

#define PIN_ANALOG_IN 36

lcd lcd(21, 22); //Create lCD128 *32 pinsda->21 scl->22

(continues on next page)

166 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

void setup() {
lcd.Init(); //initialize
lcd.Clear(); //clear

}
char string[10];

void loop() {
int adcValue = analogRead(PIN_ANALOG_IN); //read ADC pin
double voltage = (float)adcValue / 4095.0 * 3.3; // calculate voltage
double Rt = 10 * voltage / (3.3 - voltage); //calculate resistance␣

→˓value of thermistor
double tempK = 1 / (1 / (273.15 + 25) + log(Rt / 10) / 3950.0); //calculate␣

→˓temperature (Kelvin)
double tempC = tempK - 273.15; //calculate␣

→˓temperature (Celsius)
lcd.Cursor(0,0); //Set display position
lcd.Display("Voltage:"); //Setting the display
lcd.Cursor(0,8);
lcd.DisplayNum(voltage);
lcd.Cursor(0,11);
lcd.Display("V");
lcd.Cursor(2,0);
lcd.Display("tempC:");
lcd.Cursor(2,8);
lcd.DisplayNum(tempC);
lcd.Cursor(2,11);
lcd.Display("C");
delay(200);

}
//**

5.22.8 8.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the LCD 128X32 DOT displays the voltage value of the thermistor and the temperature value in the current
environment.

5.22. Project 21: Temperature Instrument 167

ESP32 Learning Kit

5.23 Project 22Bluetooth

This chapter mainly introduces how to make simple data transmission through Bluetooth of ESP22 and mobile phones.
Project 22.1 is classic Bluetooth while project 22.2 is Bluetooth control LED.

5.23.1 Project 22.1Classic Bluetooth

1.Components

USB Cable*1 ESP22*1

In this tutorial we need to use a Bluetooth APP called serial Bluetooth terminal to assist in the experiment.

Download link: https://www.appsapk.com/serial-Bluetooth-terminal/.

Here is its sign

2.Component Knowledge

Bluetooth is a short-distance communication system that can be divided into two types, namely low power Bluetooth
(BLE) and classic Bluetooth. There are two modes for simple data transfer: master mode and slave mode.

Master Mode:

In this mode, work is done on the master device and can be connected to the slave device. When the device initiates a
connection request in the main mode, information such as the address and pairing password of other Bluetooth devices
are required. Once paired, you can connect directly to them.

Slave Mode:

A Bluetooth module in the slave mode can only accept connection requests from the host, but cannot initiate connection
requests. After being connected to a host device, it can send and receive data through the host device.

Bluetooth devices can interact with each other, when they interact, the Bluetooth device in the main mode searches
for nearby devices. While a connection is established, they can exchange data. For example, when a mobile phone
exchanges data with ESP22, the mobile phone is usually in master mode and the ESP22 is in slave mode.

168 Chapter 5. Arduino Tutorial

https://www.appsapk.com/serial-bluetooth-terminal/

ESP32 Learning Kit

3.Wiring Diagram

We can use a USB cable to connect ESP22 mainboard to the USB port on a computer.

5.23. Project 22Bluetooth 169

ESP32 Learning Kit

4.Test Code

//**
/*
* Filename : Classic Bluetooth--SerialToSerialBT
* Description : ESP32 communicates with the phone by bluetooth and print phone's data␣
→˓via a serial port
* Auther : http//www.keyestudio.com
*/
#include "BluetoothSerial.h"

BluetoothSerial SerialBT;
String buffer;
void setup() {
Serial.begin(115200);
SerialBT.begin("ESP32test"); //Bluetooth device name
Serial.println("\nThe device started, now you can pair it with bluetooth!");

}

void loop() {
(continues on next page)

170 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

if (Serial.available()) {
SerialBT.write(Serial.read());

}
if (SerialBT.available()) {
Serial.write(SerialBT.read());

}
delay(20);

}
//**

6.Test Result

Compile and upload the code to the ESP22. After uploading successfully, we will use a USB cable to power on. Open
the serial monitor and set the baud rate to 115200.

When you see the serial monitor prints out the character string as below, it indicates that the Bluetooth of ESP22 is ready
and waiting for connection with a phone. (If open the serial monitor and set the baud rate to 115200, the information
is not displayed, please press the RESET button of the ESP22)

Make sure that the Bluetooth of your phone has been turned on and “Serial Bluetooth Terminal” has been installed.

5.23. Project 22Bluetooth 171

ESP32 Learning Kit

Click“Search”search for the nearby Bluetooth and select to connect the“ESP22 test”.

Turn on software APP, click the left of the terminal. Select “Devices” .

172 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

Select ESP22test in classic Bluetooth mode, and a successful connecting prompt will appear as shown below.

Data can be transferred between your phone and a computer via ESP22 now.

Send “Hello”, When the computer receives it, which will reply with “Hi!”.

5.23. Project 22Bluetooth 173

ESP32 Learning Kit

174 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.23.2 Project 22.2Bluetooth Control LED

1.Components

ESP22*1 Red LED*1 Jumper Wires

Breadboard*1 220Resistor*1 USB Cable*1

2.Wiring Diagram

5.23. Project 22Bluetooth 175

ESP32 Learning Kit

3.Test Code

//**
/*
* Filename : Bluetooth Control LED
* Description : The phone controls esp32's led via bluetooth.

When the phone sends "LED_on," ESP32's LED lights turn on.
When the phone sends "LED_off," ESP32's LED lights turn off.

* Auther : http//www.keyestudio.com
*/
#include "BluetoothSerial.h"
#include "string.h"
#define LED 15
BluetoothSerial SerialBT;
char buffer[20];
static int count = 0;
void setup() {
pinMode(LED, OUTPUT);
SerialBT.begin("ESP32test"); //Bluetooth device name
Serial.begin(115200);

(continues on next page)

176 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

Serial.println("\nThe device started, now you can pair it with bluetooth!");
}

void loop() {
while(SerialBT.available())
{
buffer[count] = SerialBT.read();
count++;

}
if(count>0){
Serial.print(buffer);
if(strncmp(buffer,"led_on",6)==0){
digitalWrite(LED,HIGH);

}
if(strncmp(buffer,"led_off",7)==0){
digitalWrite(LED,LOW);

}
count=0;
memset(buffer,0,20);

}
}
//**

4.Test Result

Compile and upload the code to the ESP22. After uploading successfully, we will use a USB cable to power on. The
APP operation is the same as the project 22.1. To make the external LED on and off, simply change the sending content
to “led_on” and “led_off”.

Moving the APP to send data:

The serial monitor will display as follows:

5.23. Project 22Bluetooth 177

ESP32 Learning Kit

LED Circumstance

Note: If the sent content is not “led-on ‘or” led-off “, the status of the LED will not change. If the LED is on, it remains
on when irrelevant content is received; Conversely, if the LED is off, it continues to be off when irrelevant content is
received.

178 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.24 Project 23WiFi Station Mode

5.24.1 1.Introduction

ESP32 has three different WiFi operating modes: Station mode, AP mode and AP+Station mode. All WiFi program-
ming projects must be configured with WiFi operating mode before using, otherwise WiFi cannot be used.

In this project, we are going to learn the WiFi Station mode of the ESP32.

5.24.2 2.Components

USB Cable*1 ESP32*1

5.24.3 3.Wiring Diagram

Plug the ESP32 to the USB port of your PC

5.24.4 4.Component Knowledge

Station mode

When setting Station mode, the ESP32 is taken as a WiFi client. It can connect to the router network and communicate
with other devices on the router via a WiFi connection.

As shown in the figure below, the PC and the router have been connected. If the ESP32 wants to communicate with
the PC, the PC and the router need to be connected.

5.24. Project 23WiFi Station Mode 179

ESP32 Learning Kit

180 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.24.5 5.Test Code

Since WiFi names and passwords vary from place to place, thereby users need to enter the correct WiFi names and
passwords in the box shown below before the program code runs.

5.24. Project 23WiFi Station Mode 181

ESP32 Learning Kit

//**
/*
* Filename : WiFi Station
* Description : Connect to your router using ESP32
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h> //Include the WiFi Library header file of ESP32.

//Enter correct router name and password.
const char *ssid_Router = "ChinaNet-2.4G-0DF0"; //Enter the router name
const char *password_Router = "ChinaNet@233"; //Enter the router password

void setup(){
Serial.begin(115200);
delay(2000);
Serial.println("Setup start");
WiFi.begin(ssid_Router, password_Router);//Set ESP32 in Station mode and connect it to␣

→˓your router.
Serial.println(String("Connecting to ")+ssid_Router);

//Check whether ESP32 has connected to router successfully every 0.5s.
while (WiFi.status() != WL_CONNECTED){
delay(500);
Serial.print(".");

(continues on next page)

182 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

}
Serial.println("\nConnected, IP address: ");
Serial.println(WiFi.localIP());//Serial monitor prints out the IP address assigned to␣

→˓ESP32.
Serial.println("Setup End");

}

void loop() {
}
//**

5.24.6 6.Test Result

After making sure the router name and password are entered correctly, compile and upload the code to ESP32, open
serial monitor and set baud rate to 115200.

When ESP32 successfully connects to“ssid_Router”, serial monitor will print out the IP address, then monitor will
display as follows: (If open the serial monitor and set the baud rate to 115200, the information is not displayed, please
press the RESET button of the ESP32)

5.24. Project 23WiFi Station Mode 183

ESP32 Learning Kit

5.25 Project 24WiFi AP Mode

5.25.1 1.Introduction

In this project, we are going to learn the WiFi AP mode of the ESP32.

5.25.2 2.Components

USB Cable*1 ESP32*1

5.25.3 3.Wiring Diagram

Plug the ESP32 mainboard to the USB port of your PC

5.25.4 4.Component Knowledge

AP Mode:

When setting AP mode, a hotspot network will be created, waiting for other WiFi devices to connect. As shown below;

Take the ESP32 as the hotspot, if a phone or PC needs to communicate with the ESP32, it must be connected to the
ESP32’s hotspot.

Communication is only possible after a connection is established via the ESP32.

184 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.25. Project 24WiFi AP Mode 185

ESP32 Learning Kit

5.25.5 5.Test Code

Before running the code , you can make any changes to the ESP32 AP name and password in the box as shown below,
but in a default circumstance, it doesn’t need to modify.

186 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

//**
/*
* Filename : WiFi AP
* Description : Set ESP32 to open an access point
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h> //Include the WiFi Library header file of ESP32.

const char *ssid_AP = "ESP32_WiFi"; //Enter the router name
const char *password_AP = "12345678"; //Enter the router password

IPAddress local_IP(192,168,1,108);//Set the IP address of ESP32 itself
IPAddress gateway(192,168,1,1); //Set the gateway of ESP32 itself
IPAddress subnet(255,255,255,0); //Set the subnet mask for ESP32 itself

void setup(){
Serial.begin(115200);
delay(2000);
Serial.println("Setting soft-AP configuration ... ");
WiFi.disconnect();
WiFi.mode(WIFI_AP);
Serial.println(WiFi.softAPConfig(local_IP, gateway, subnet) ? "Ready" : "Failed!");

(continues on next page)

5.25. Project 24WiFi AP Mode 187

ESP32 Learning Kit

(continued from previous page)

Serial.println("Setting soft-AP ... ");
boolean result = WiFi.softAP(ssid_AP, password_AP);
if(result){
Serial.println("Ready");
Serial.println(String("Soft-AP IP address = ") + WiFi.softAPIP().toString());
Serial.println(String("MAC address = ") + WiFi.softAPmacAddress().c_str());

}else{
Serial.println("Failed!");

}
Serial.println("Setup End");

}

void loop() {
}
//**

5.25.6 6.Test Result

Enter the ESP32 AP name and password correctly, compile and upload the code to ESP32, open the serial monitor and
set the baud rate to 115200, then monitor will display as follows:

(If open the serial monitor and set the baud rate to 115200, the information is not displayed, please press the RESET
button of the ESP32)

188 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

When observing the printed information of the serial monitor, turn on the WiFi scanning function of the mobile phone,
you can see the ssid_AP on ESP32, which is dubbed “ESP32_Wifi” in this code. You can connect to it either by typing
the password “12245678” or by modifying the code to change its AP name and password.

5.26 Project 25WiFi Station+AP Mode

5.26.1 1.Introduction

In this project, we are going to learn the AP+Station mode of the ESP32.

5.26.2 2.Components

USB Cable*1 ESP32*1

5.26. Project 25WiFi Station+AP Mode 189

ESP32 Learning Kit

5.26.3 3.Wiring Diagram

Plug the ESP32 mainboard to the USB port of your PC

5.26.4 4.Component Knowledge

AP+Station mode:

In addition to the AP mode and the Station mode, AP+Station mode can be used at the same time. Turn on the Station
mode of the ESP32, connect it to the router network, and it can communicate with the Internet through the router. Then
turn on the AP mode to create a hotspot network.

Other WiFi devices can be connected to the router network or the hotspot network to communicate with the ESP32.

190 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

5.26.5 5.Test Code

Before running the code, you need to modify the ssid_Router, password_Router, ssid_AP and password_AP, as shown
in the box below:

5.26. Project 25WiFi Station+AP Mode 191

ESP32 Learning Kit

//**
/*
* Filename : WiFi AP+Station
* Description : ESP32 connects to the user's router, turning on an access point
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h>

const char *ssid_Router = "ChinaNet-2.4G-0DF0"; //Enter the router name
const char *password_Router = "ChinaNet@233"; //Enter the router password
const char *ssid_AP = "ESP32_WiFi"; //Enter the router name
const char *password_AP = "12345678"; //Enter the router password

void setup(){
Serial.begin(115200);
Serial.println("Setting soft-AP configuration ... ");
WiFi.disconnect();
WiFi.mode(WIFI_AP);
Serial.println("Setting soft-AP ... ");
boolean result = WiFi.softAP(ssid_AP, password_AP);
if(result){
Serial.println("Ready");
Serial.println(String("Soft-AP IP address = ") + WiFi.softAPIP().toString());

(continues on next page)

192 Chapter 5. Arduino Tutorial

ESP32 Learning Kit

(continued from previous page)

Serial.println(String("MAC address = ") + WiFi.softAPmacAddress().c_str());
}else{
Serial.println("Failed!");

}

Serial.println("\nSetting Station configuration ... ");
WiFi.begin(ssid_Router, password_Router);
Serial.println(String("Connecting to ")+ ssid_Router);
while (WiFi.status() != WL_CONNECTED){
delay(500);
Serial.print(".");

}
Serial.println("\nConnected, IP address: ");
Serial.println(WiFi.localIP());
Serial.println("Setup End");

}

void loop() {
}
//**

6.Test Result

Ensure that the code in the program has been modified correctly, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on.

Open the serial monitor and set the baud rate to 115200, then monitor will display as follows: (If open the serial monitor
and set the baud rate to 115200, the information is not displayed, please press the RESET button of the ESP32)

5.26. Project 25WiFi Station+AP Mode 193

ESP32 Learning Kit

Open the WiFi scanning function of the mobile phone, you can see the ssid_AP.

194 Chapter 5. Arduino Tutorial

CHAPTER

SIX

GETTING STARTED WITH PYTHON

1.Install Thonny

Thonny is a free and open source software platform with small size, simple interface, simple operation and rich func-
tions. It is a Python IDE suitable for beginners. In this tutorial, we use this IDE to develop a ESP32. Thonny supports
multiple operating systems including Windows, Mac OS, Linux.

2.Download Thonny

1) Enter the websitehttps://thonny.org to download the latest version of Thonny.

(2)Thonny open-source code libraryhttps://github.com/thonny/thonny.

195

https://thonny.org
https://github.com/thonny/thonny

ESP32 Learning Kit

1. The downloaded Thonny icon is as follow:

2.Double-click“thonny-3.3.13.exe”and select install mode. You can choose

196 Chapter 6. Getting started with Python

ESP32 Learning Kit

3.You can also keep selecting Next to finish the installation.

197

ESP32 Learning Kit

4.If you want to change the route of installing Thonnyjust click“Browse. . .”to select a new route and click OK.

198 Chapter 6. Getting started with Python

ESP32 Learning Kit

5.Click Create desktop icon, you will view Thonny on your desktop.

6.Click“Install”

199

ESP32 Learning Kit

7.Wait for a while but don’t click **Cancel

G. Click**“Finish”**

200 Chapter 6. Getting started with Python

ESP32 Learning Kit

2.Basic Setting

Double-click Thonny, choose language and initial settings and click Let’s go

201

ESP32 Learning Kit

Click“View”→“File”and“Shell”

202 Chapter 6. Getting started with Python

ESP32 Learning Kit

203

ESP32 Learning Kit

Install the CP2102 driver

Before using the Thonny, we need to install the CP2102 driver in the computer.

Windows system

Check if the CP2102 driver has been installed

1. Interface the ESP32 with your PC with a USB cable

2. Click“This PC”and right-click Manage”

204 Chapter 6. Getting started with Python

ESP32 Learning Kit

3.Click“Device Manager”, if the CP2102 driver has been installedSilicon Labs CP210x USB to UART Bridge(COMx)
will be shown.

If the CP2102 has not been installed

205

ESP32 Learning Kit

Click“CP2102USB to UART Bridge Controller”and Update driver”.

206 Chapter 6. Getting started with Python

ESP32 Learning Kit

Click“Browse my computer for drivers ”.

207

ESP32 Learning Kit

Click Browse. . . to choose CP210x_6.7.4 (“4. Python Tutorial\1.Development Environment Configuration\CP2102
Driver File-Windows”) and click Next

208 Chapter 6. Getting started with Python

ESP32 Learning Kit

The CP2102 driver will be installed

MAC System

209

ESP32 Learning Kit

Download link for CP2102CP2102-Driver-File-MAC.zip

Download MacOS version

Unzip the downloaded package

Open the folder and double-click“SiLabsUSBDriverDisk.dmg”file

210 Chapter 6. Getting started with Python

ESP32 Learning Kit

Then you can see the following file

Double-click**“Install CP210x VCP Driver”tap**“Don’t warn me when opening application on this disk im-
age”and click“Open”

211

ESP32 Learning Kit

Click“Continue”

Click“Agree”then tap“Continue”

212 Chapter 6. Getting started with Python

ESP32 Learning Kit

Click“Continue”then input your user password

213

ESP32 Learning Kit

Select“Select Open Security Preferences”

Click on security lock and enter your user password to authorize.

214 Chapter 6. Getting started with Python

ESP32 Learning Kit

When you see that the lock is opened, click “Allow”.

215

ESP32 Learning Kit

Return to the installation interface and wait for the installation as prompted.

216 Chapter 6. Getting started with Python

ESP32 Learning Kit

The installation is successful

3.Burn Micropython firmware

217

ESP32 Learning Kit

To run a Python program on the ESP32 board, we need to burn the firmware to the ESP32 board first.

Download Micropython firmware

microPython websitehttp://micropython.org/

ESP32 firmwarehttps://micropython.org/download/esp32/

The firmware we use**esp32-20210902-v1.17.bin

FirmwareDownload Python Firmware

Burn the Micropython firmware

Connect the ESP32 to your PC with a USB cable

218 Chapter 6. Getting started with Python

http://micropython.org/
https://micropython.org/download/esp32/

ESP32 Learning Kit

Make sure the driver has been installed successfully and the COM port can be identified correctly. Open Device
Manager and expand “Ports”.

Open Thonnyclick“run”and“Select interpreter. . . ”

219

ESP32 Learning Kit

Select Micropython (ESP32) and Silicon Labs CP210x USB to UART Bridge(COM3) and click “Install or update
firmware”.

220 Chapter 6. Getting started with Python

ESP32 Learning Kit

Select“Silicon Labs CP210x USB to UART Bridge(COM3)”click “ Browse. . . ”and choose the firmware esp32-
20210902-v1.17.bin. Check“Erase flash before installing”and“Flash mode”then click“Install”.

If you haven’t downloaded the firmware, please click on the link to downloadDownload Python Firmware

(NoteIf you fail to install the firmwarepress the Boot button on the ESP32 board and click“Install”

221

ESP32 Learning Kit

222 Chapter 6. Getting started with Python

ESP32 Learning Kit

Then click Close and OK

223

ESP32 Learning Kit

224 Chapter 6. Getting started with Python

ESP32 Learning Kit

225

ESP32 Learning Kit

Turn off all windows and turn to the main page and click “STOP.

226 Chapter 6. Getting started with Python

ESP32 Learning Kit

Test Code

Test the Shell commander

Input print(‘hello world’) in the“Shell”and press Enter

Run the test code(online)

Connect the ESP32 to your PC. Users can program and debug programs with Thonny.

Open Thonny and click Open.

If you haven’t downloaded the code file yet, please click on the link to download it:Download Python Codes

227

ESP32 Learning Kit

When a new window pops up, click“This computer”

228 Chapter 6. Getting started with Python

ESP32 Learning Kit

Select the file“Project_01_HelloWorld.py”

Click ,“Hello World”will be printed in the“Shell”monitor.

Note: Press the reset button to reboot

Run the test code(offline)

After rebooting the ESP32, run the boot.py file under the root directory first then run your code file.

So, we need to add a guide program to run the code of users.

Move the file“4. Python Tutorial\2. Python Projects” to the disk(D)the route is“D:/2. Python Projects”, then open the
“Thonny”.

229

ESP32 Learning Kit

Click project 00. Boot.Boot and double-click boot.py, then the code under MicroPython device can run offline.

If you want to run the code offline, you nee to upload boot.py and program code to MicroPython device, then press the
ESP32’s reset button. We will take the project 00 and project 01 as an example. Select boot.py and right-click Upload
to /.

230 Chapter 6. Getting started with Python

ESP32 Learning Kit

Similarly, upload the project_01_Helloworld. py file to the “MicroPython Device”.

Press the Reset button, you will view code running in the Shell monitor

231

ESP32 Learning Kit

Upload the code to the ESP32

We take the boot.py as an example. If we add a boot.py in each code directory, reboot the ESP32, the boot.py will run
first.

Select “boot.py”in the file Project 03LED Flashing, right-click to select“Upload to /”. Then the code will be uploaded
to the root directory of the ESP32 and click OK.

232 Chapter 6. Getting started with Python

ESP32 Learning Kit

Download the code to your PC:

MicroPython device<boot.py, then right-click Download to. . .

233

ESP32 Learning Kit

Delete files of the ESP32

For example, click“boot.py”in the MicroPython device and right-click Delete.

Select boot.py in the Project 03LED Flashing folder, right-click Move to Recycle Bin to delete it.

234 Chapter 6. Getting started with Python

ESP32 Learning Kit

Create and save code

Click“File”→“New”to create and edit code.

235

ESP32 Learning Kit

Enter the code in the new file. We take the Project_03_LED_Flashing.py as an example.

236 Chapter 6. Getting started with Python

ESP32 Learning Kit

Click to save the code to your PC or the ESP32.

Select MicroPython device and enter main.py in the new page and click OK.

Then the code will be uploaded to the ESP32.

237

ESP32 Learning Kit

Disconnect the USB cable and connect it, you can see the effect of the LED flashing continuously in the circuit on a
cycle.

238 Chapter 6. Getting started with Python

CHAPTER

SEVEN

PYTHON TUTORIAL

7.1 Download Python code files

Click on the link to download the Python code fileDownload Python Codes

7.2 Development Environment Configuration

Click on the link to enter the development environment setup tutorial:Pythin Development Environment Configuration

7.3 Project 01: Hello World

1. Overview

For ESP32 beginners, we will start with some simple things. In this project, you only need a ESP32 mainboard, a USB
cable and Raspberry Pi to complete the “Hello World!” project, which is a test of communication between the ESP32
mainboard and the Raspberr y Pi as well as a primary project.

2. Components

ESP32*1 USB Cable*1

3. Wiring Diagram

In this project, we will use a USB cable to connect the ESP32 to Raspberry Pi.

239

ESP32 Learning Kit

Running code online

To run the ESP32 online, you need to connect the ESP32 to the computer, which allows you to compile or debug
programs using Thonny software.

Advantages:

1. You can use the Thonny software to compile or debug programs.

2. Through the “Shell” window, you can view error messages and output results generated during the running of
the program as well as query related function information online to help improve the program.

Disadvantages:

1. To run the ESP32 online, you must connect the ESP32 to a computer and run it with the Thonny software.

2. If the ESP32 is disconnected from the computer , when they reconnect, the program won’t run again.

Basic Operation:

1. Open Thonny and click“Open. . . ”.

2. Click“This computer”in the new pop-up window.

240 Chapter 7. Python Tutorial

ESP32 Learning Kit

In the new dialog boxselect“Project_01_HelloWorld.py”,click“Open”. (If you haven’t downloaded the code file, please
click on the link to download it:Download Python Codes)

3. Click “Run current script”to execute the program“Hello World!”, “Welcome Keyestudio” , which will be
printed in the“Shell”window.

7.3. Project 01: Hello World 241

ESP32 Learning Kit

Exit running online

When running online, click “Stop /Restart Backend”or press “Ctrl+C”on the Thonny to exit the program.

5. Test Code

print("Hello World!")
print("Welcome Keyestudio")

7.4 Project 02: Turn On LED

1. Introduction

In this project, we will show you how to light up the LED. We use the ESP32’s digital pin to turn on the LED so that
the LED is lit up.

2. Components

242 Chapter 7. Python Tutorial

ESP32 Learning Kit

ESP32*1 Breadboard*1 USB Cable*1

Red LED*1 220 Resistor*1 Jumper Wire*2

3. Component Knowledge

1LED:

The LED is a semiconductor known as “light-emitting diode” , which is an electronic device made from semiconducting
materials(silicon, selenium, germanium, etc.). It has an anode and a cathode, the short lead is cathode, which connects
to GND, the long lead is anode, which connects to 3.3V or 5V.

2Five-band resistor

A resistor is an electronic component in a circuit that restricts or regulates the flow current to flow. On the left is the
appearance of the resistor and on the right is the symbol for the resistance in the circuit . Its unit is(). 1 m= 1000 k1k=
10007)

7.4. Project 02: Turn On LED 243

ESP32 Learning Kit

We can use resistors to protect sensitive components, such as LED. The strength of the resistance is marked on the
body of the resistor with an electronic color code. Each color code represents a number, and you can refer to it in a
resistance card.

-Color 1 – 1st Digit.

-Color 2 – 2nd Digit.

-Color 3 – 3rd Digit.

-Color 4 – Multiplier.

-Color 5 – Tolerance.

244 Chapter 7. Python Tutorial

ESP32 Learning Kit

In this kit, we provide three five-band resistors with different resistance values. We three five-band resistors as an
example.

220 Resistor*10

10K Resistor*10

7.4. Project 02: Turn On LED 245

ESP32 Learning Kit

1K Resistor*10

In the same voltage, there will be less current and more resistance. The connection between current(I), voltage(V), and
resistance® can be expressed by the formula: I=U/R. In the figure below, if the voltage is 3V, the current through R1
is: I = U / R = 3 V / 10 K= 0.0003A= 0.3mA.

Don’t connect a low resistance directly to the two poles of the power supply, which will cause excessive current to

246 Chapter 7. Python Tutorial

ESP32 Learning Kit

damage the electronic components. Resistors do not have positive and negative poles.

3Bread board

Breadboards are used to build and test circuits quickly before completing any circuit design. There are many holes in the
breadboard that can be inserted into circuit components such as integrated circuits and resistors. A typical breadboard
is shown below

The breadboard has strips of metal , which run underneath the board and connect the holes on the top of the board. The
metal strips are laid out as shown below. Note that the top and bottom rows of holes are connected horizontallywhile
the remaining holes are connected vertically.

The first two rows (top) and the last two rows (bottom) of the breadboard are used for the positive pole (+) and negative
pole (-) of the power supply respectively. The conductive layout of the breadboard is shown in the figure below:

7.4. Project 02: Turn On LED 247

ESP32 Learning Kit

When we connect DIP (Dual In-line Packages) components, such as integrated circuits, microcontrollers, chips and so
on, we can see that a groove in the middle isolates the middle part, so the top and bottom of the groove is not connected.
DIP components can be connected as shown in the following diagram:

248 Chapter 7. Python Tutorial

ESP32 Learning Kit

4) Power Supply

The ESP32 needs 3.3V-5V power supply. In this project, we will connect the ESP32 to the computer via an USB cable.

4.Wiring Diagram

7.4. Project 02: Turn On LED 249

ESP32 Learning Kit

First, disconnect all power from the ESP32. Then build the circuit according to the wiring diagram. After the circuit
is built and verified correctly, connect the ESP32 to your computer via a USB cable.

Note: Avoid any possible short circuits (especially connecting 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause perma-
nent damage to your hardware!

Note:

How to connect a LED

How to identify the 220 Five-band resistor

250 Chapter 7. Python Tutorial

ESP32 Learning Kit

5. Test Code

If you haven’t downloaded the code file yet, please click on the link to download it:Download Python Codes

Exit running online

Open“Thonny” , click“This computer”→“D:”→“2. Python Projects”→“Project 02Turn On LED”

7.4. Project 02: Turn On LED 251

ESP32 Learning Kit

Click“Project 02Turn On LED”, double-click“Project_02_Turn_On_LED.py”to open it, as shown below;

from machine import Pin
import time
led = Pin(15, Pin.OUT) # create LED object from Pin 15, Set Pin 15 to output
led.value(1) # Set led turn on

Connect the ESP32 to your PC. Click “Stop/Restart backend”then go to the Shell window to check.

252 Chapter 7. Python Tutorial

ESP32 Learning Kit

Click “Run current script”the code starts to be executed and the LED in the circuit lit up. Press “Ctrl+C” or

click “Stop/Restart backend” to exit the program.

7.4. Project 02: Turn On LED 253

ESP32 Learning Kit

Note: This is the code running online. If you disconnect USB cable and power up the ESP32 or press its reset button,
LED is not bright and the following messages will be displayed in the “Shell” window of Thonny:

Code running offlineUpload the code to ESP32

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

254 Chapter 7. Python Tutorial

ESP32 Learning Kit

As shown below, right-click the file“Project_02_Turn_On_LED.py”select “Upload to /”to upload the code to ESP32.

Upload“boot.py”in the same way.

7.4. Project 02: Turn On LED 255

ESP32 Learning Kit

Press the reset button of ESP32 and you can see LED is ON .

NoteCodes here is run offline. If you want to stop running offline and enter“Shell”, just click “Stop/Restart back-
end”in Thonny.

256 Chapter 7. Python Tutorial

ESP32 Learning Kit

7.5 Project 03LED Flashing

1.Introduction

In this project, we will show you the LED flashing effect. We use the ESP32’s digital pin to turn on the LED and make
it flashing.

2.Components

ESP32*1 Breadboard*1 USB Cable*1

Red LED*1 220 Resistor*1 Jumper Wire*2

3.Wiring diagram

First, disconnect all power from the ESP32. Then build the circuit according to the wiring diagram. After the circuit
is built and verified correct, connect the ESP32 to your computer using a USB cable.

Note: Avoid any possible short circuits (especially connecting 3.3V and GND)!

7.5. Project 03LED Flashing 257

ESP32 Learning Kit

Note:

How to connect a LED

How to identify the 220 Five-color ring resistor

258 Chapter 7. Python Tutorial

ESP32 Learning Kit

4.Project code

Codes used in this tutorial are saved in “2. Python Projects”.

If you haven’t downloaded the code file yet, please click on the link to download it:Download Python Codes

Code running online:

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 03LED Flashing”.

7.5. Project 03LED Flashing 259

ESP32 Learning Kit

Expand folder“Project 03: LED Flashing”and double left-click “Project_03_LED_Flashing.py” to open it. As shown
in the illustration below

from machine import Pin
import time

led = Pin(15, Pin.OUT) # create LED object from Pin 15, Set Pin 15 to output

try:
(continues on next page)

260 Chapter 7. Python Tutorial

ESP32 Learning Kit

(continued from previous page)

while True:
led.value(1) # Set led turn on
time.sleep(0.5) # Sleep 0.5s
led.value(0) # Set led turn off
time.sleep(0.5) # Sleep 0.5s

except:
pass

Make sure the ESP32 has been connected to the computer. Click “Stop/Restart backend” and see what will display
in the“Shell”window.

Click “Run current script”the code starts to be executed and you can see the LED flash. Press“Ctrl+C”or

click “Stop/Restart backend”to exit the program.

7.5. Project 03LED Flashing 261

ESP32 Learning Kit

Note: This is the code running online. If you disconnect USB cable and power up the ESP32 or press its reset button,
the LED in the circuit will stop flashing and the following messages will be displayed in the “Shell”

262 Chapter 7. Python Tutorial

ESP32 Learning Kit

Code running offlineUpload the code to ESP32

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

As shown below, right-click the file“Project_03_LED_Flashing.py”select “Upload to /”to upload the code to ESP32.

7.5. Project 03LED Flashing 263

ESP32 Learning Kit

Upload“boot.py”in the same way.

Press the reset button of ESP32 and you can see the LED flash

264 Chapter 7. Python Tutorial

ESP32 Learning Kit

NoteCodes here is run offline. If you want to stop running offline and enter“Shell”, just click “Stop/Restart back-
end”in Thonny.

7.6 Project 04: Breathing Led

1.Introduction

In previous studies, we know that LEDs have on/off state, so how to enter the intermediate state? How to output an
intermediate state to make the LED half bright? That’s what we’re going to learn.

Breathing light, that is, LED is turned from off to on gradually, and gradually from on to off, just like “breathing”. So,
how to control the brightness of a LED? We will use ESP32’s PWM to achieve this target.

2.Components

7.6. Project 04: Breathing Led 265

ESP32 Learning Kit

ESP32*1 Breadboard*1 USB Cable*1

Red LED*1 220 Resistor*1 Jumper Wire*2

3.Component knowledge

Analog & Digital:

An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discrete time signal
is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A familiar example of
an Analog Signal would be how the temperature throughout the day is continuously changing and could not suddenly
change instantaneously from 0℃ to 10℃. However, Digital Signals can instantaneously change in value. This change
is expressed in numbers as 1 and 0 (the basis of binary code). Their differences can more easily be seen when compared
when graphed as below.

266 Chapter 7. Python Tutorial

ESP32 Learning Kit

In practical application, we often use binary as the digital signal, that is a series of 0’s and 1’s. Since a binary signal
only has two values (0 or 1), it has great stability and reliability. Lastly, both analog and digital signals can be converted
into the other.

PWM

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits. Common
processors cannot directly output analog signals. PWM technology makes it very convenient to achieve this conversion
(translation of digital to analog signals).

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high levels and
low levels, which alternately last for a while. The total time for each set of high levels and low levels is generally fixed,
which is called the period (Note: the reciprocal of the period is frequency). The time of high level outputs are generally
called “pulse width”, and the duty cycle is the percentage of the ratio of pulse duration, or pulse width (PW) to the total
period(T) of the waveform.

The longer the output of high levels last, the longer the duty cycle and the higher the corresponding voltage in the
analog signal will be. The following figures show how the analog signal voltages vary between 0V-3V3 (high level is
3V3) corresponding to the pulse width 0%-100%:

7.6. Project 04: Breathing Led 267

ESP32 Learning Kit

The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this relationship, we
can use PWM to control the brightness of an LED or the speed of DC motor and so on. It is evident from the above
that PWM is not real analog, and the effective value of the voltage is equivalent to the corresponding analog. So, we
can control the output power of the LED and other output modules to achieve different effects.

ESP32 and PWM:

The ESP32 PWM controller has 8 independent channels, each of which can independently control frequency, duty
cycle, and even accuracy. Unlike traditional PWM pins, the PWM output pins of ESP32 are configurable and they can
be configured to PWM.

4.Wiring diagram

268 Chapter 7. Python Tutorial

ESP32 Learning Kit

Note:

How to connect a LED

How to identify the 220 Five-color ring resistor

7.6. Project 04: Breathing Led 269

ESP32 Learning Kit

5.Project code

The design of this project makes the GP15 output PWM, and the pulse width gradually increases from 0% to 100%,
and then gradually decreases from 100% to 0%.

Codes used in this tutorial are saved in“2. Python Projects”.

If you haven’t downloaded the code file yet, please click on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→”Project 04Breathing Led”, and double left-click
“Project_04_Breathing_LED.py”.

270 Chapter 7. Python Tutorial

ESP32 Learning Kit

import time
from machine import Pin,PWM

#The way that the ESP32 PWM pins output is different from traditionally controllers.
#It can change frequency and duty cycle by configuring PWM’s parameters at the␣
→˓initialization stage.
#Define GPIO15’s output frequency as 10000Hz and its duty cycle as 0, and assign them to␣
→˓PWM.
pwm =PWM(Pin(15,Pin.OUT),10000,0)

try:
while True:

#The range of duty cycle is 0-1023, so we use the first for loop to control PWM to␣
→˓change the duty
#cycle value,making PWM output 0% -100%; Use the second for loop to make PWM output 100%-
→˓0%.

for i in range(0,1023):
pwm.duty(i)
time.sleep_ms(1)

for i in range(0,1023):
pwm.duty(1023-i)
time.sleep_ms(1)

except:
#Each time PWM is used, the hardware Timer will be turned ON to cooperate it. Therefore,␣
→˓after each use of PWM,
#deinit() needs to be called to turned OFF the timer. Otherwise, the PWM may fail to␣
→˓work next time.

pwm.deinit()

6.Project result

7.6. Project 04: Breathing Led 271

ESP32 Learning Kit

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that the LED is turned from ON to OFF

and then back from OFF to ON gradually like breathing. Press“Ctrl+C”or click “Stop/Restart backend” to exit the
program.

272 Chapter 7. Python Tutorial

ESP32 Learning Kit

7.7 Project 05Traffic Lights

1.Introduction

Traffic lights are closely related to people’s daily life, which generally show red, yellow, and green. Everyone should
obey the traffic rules, which can avoid many traffic accidents. In this project, we will use ESP32 and some LEDs (red,
green and yellow) to simulate the traffic lights.

2.Components

ESP32*1 Red LED*1 USB Cable*1 Jumper Wires

Bread board*1 Yellow LED*1 Green LED*1 220 Resistor*3

7.7. Project 05Traffic Lights 273

ESP32 Learning Kit

Note:

How to connect a LED

How to identify the 220 Five-color ring resistor

4.Project code

Codes used in this tutorial are saved in“2. Python Projects”.

If you haven’t downloaded the code file yet, please click on the link to download it:Download Python Codes

274 Chapter 7. Python Tutorial

ESP32 Learning Kit

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 05Traffic Lights”. and double left-click
“Project_05_Traffic_Lights.py”.

from machine import Pin
import time

led_red = Pin(0, Pin.OUT) # create red led object from Pin 0, Set Pin 0 to output
led_yellow = Pin(2, Pin.OUT) # create yellow led object from Pin 2, Set Pin 2 to output
led_green = Pin(15, Pin.OUT) # create green led object from Pin 15, Set Pin 15 to output

while True:
led_red.value(1) # Set red led turn on
time.sleep(5) # Sleep 5s
led_red.value(0) # Set red led turn off
led_yellow.value(1)
time.sleep(0.5)
led_yellow.value(0)
time.sleep(0.5)
led_yellow.value(1)
time.sleep(0.5)
led_yellow.value(0)
time.sleep(0.5)
led_yellow.value(1)
time.sleep(0.5)
led_yellow.value(0)
time.sleep(0.5)
led_green.value(1)
time.sleep(5)
led_green.value(0)

5.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

7.7. Project 05Traffic Lights 275

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see are below:

First, the green light will be on for five seconds and then off; Next, the yellow light blinks three times and then goes
off; Then, the red light goes on for five seconds and then goes off; Repeat steps 1 to 3 above.

Press “Ctrl+C” or click “Stop/Restart backend” to exit the program.

276 Chapter 7. Python Tutorial

ESP32 Learning Kit

7.8 Project 06: RGB LED

1.Introduction

RGB is composed of three colors (red, green and blue), which can emit different colors of light by mixing these three
basic colors.

In this project, we will introduce the RGB and show you how to use ESP32 to control the RGB to emit different color
light. RGB is pretty basic, but it’s also a great way to learn the fundamentals of electronics and coding.

2.Components

7.8. Project 06: RGB LED 277

ESP32 Learning Kit

ESP32*1 RGB LED Jumper Wires

Breadboard*1 220 Resistor*3 USB Cable*1

3.Component knowledge

Most monitors adopt the RGB color standard, and all colors on a computer screen are a mixture of red, green and blue
in varying proportions.

This RGB LED has 4 pins, each color (red, green, blue) and a common cathode, to change its brightness, we can use
the PWM of the ESP32 pins, which can give different duty cycle signals to the RGB to produce different colors of light.

If we use three 10-bit PWM to control the RGB, in theory, we can create 2 10*210*210 = 1,073,741,824(1 billion)
colors through different combinations.

4.Wiring diagram

278 Chapter 7. Python Tutorial

ESP32 Learning Kit

Note

The longest pin (common cathode) of the RGB LED is connected to GND.

How to identify the 220 Five-color ring resistor

7.8. Project 06: RGB LED 279

ESP32 Learning Kit

5.Project code

Codes used in this tutorial are saved in“2. Python Projects”.

If you haven’t downloaded the code file yet, please click on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 06RGB LED”, and double left-click
“Project_06_RGB_LED.py”.

280 Chapter 7. Python Tutorial

ESP32 Learning Kit

import Pin, PWM and Random function modules.
from machine import Pin, PWM
from random import randint
import time

#Configure ouput mode of GPIO15, GPIO2 and GPIO0 as PWM output and PWM frequency as␣
→˓10000Hz.
pins = [0, 2, 15]

pwm0 = PWM(Pin(pins[0]),10000)
pwm1 = PWM(Pin(pins[1]),10000)
pwm2 = PWM(Pin(pins[2]),10000)

#define a function to set the color of RGBLED.
def setColor(r, g, b):

pwm0.duty(1023-r)
pwm1.duty(1023-g)
pwm2.duty(1023-b)

try:
while True:

red = randint(0, 1023)
green = randint(0, 1023)
blue = randint(0, 1023)
setColor(red, green, blue)
time.sleep_ms(200)

except:
pwm0.deinit()
pwm1.deinit()
pwm2.deinit()

6.Project result

7.8. Project 06: RGB LED 281

ESP32 Learning Kit

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that RGB begins to display random colors.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

282 Chapter 7. Python Tutorial

ESP32 Learning Kit

7.9 Project 07: Flowing Water Light

1.Introduction

In our daily life, we can see many billboards composed of different colors of LED. They constantly change the light
(like water) to attract customers’ attention. In this project, we will use ESP32 to control 10 leds to achieve the effect of
flowing water.

2.Components

ESP32*1 Breadboard*1 USB Cable*1

Red LED*1 220 Resistor*1 Jumper Wire*2

3.Wiring diagram :

Note:

How to connect a LED

7.9. Project 07: Flowing Water Light 283

ESP32 Learning Kit

How to identify the 220 Five-color ring resistor

4.Project code

This project is designed to make a flowing water lamp. Which are these actions: First turn LED #1 ON, then turn it
OFF. Then turn LED #2 ON, and then turn it OFF. . . and repeat the same to all 10 LEDs until the last LED is turns
OFF. This process is repeated to achieve the“movements” of flowing water.

Codes used in this tutorial are saved in“2. Python Projects”.

If you haven’t downloaded the code file yet, please click on the link to download it:Download Python Codes

284 Chapter 7. Python Tutorial

ESP32 Learning Kit

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 07Flowing Water Light”, and double
left-click “Project_07_Flowing_Water_Light.py”.

from machine import Pin
import time

#Use an array to define 10 GPIO ports connected to LED Bar Graph for easier operation.
pins = [22, 21, 19, 18, 17, 16, 4, 0, 2, 15]
#Use two for loops to turn on LEDs separately from left to right and then back from␣
→˓right to left
def showLed():

for pin in pins:
print(pin)
led = Pin(pin, Pin.OUT)
led.value(1)
time.sleep_ms(100)
led.value(0)
time.sleep_ms(100)

for pin in reversed(pins):
print(pin)
led = Pin(pin, Pin.OUT)
led.value(1)
time.sleep_ms(100)
led.value(0)
time.sleep_ms(100)

while True:
showLed()

5.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

7.9. Project 07: Flowing Water Light 285

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see that 10 LEDs will light up from left to right

and then back from right to left. Press“Ctrl+C” or click “Stop/Restart backend” to exit the program.

286 Chapter 7. Python Tutorial

ESP32 Learning Kit

7.10 Project 081-Digit Digital Tube

1.Introduction

A 1-Digit 7-Segment Display is an electronic display device that displays decimal numbers. It is widely used in digital
clocks, electronic meters, basic calculators and other electronic devices that display digital information. Even though
they may not look modern enough, they are an alternative to more complex dot matrix displays and are easy to use in
limited light conditions and strong sunlight. In this project, we will use ESP32 to control 1-Digit 7-segment display to
display numbers.

2.Components

ESP32*1 Breadboard*1 USB Cable*1

1-Digit 7-Segment Display*1 220 Resistor*8 Jumper Wire*2

3.Component knowledge

7.10. Project 081-Digit Digital Tube 287

ESP32 Learning Kit

1-Digit 7-Segment Display principle: Digital tube display is a semiconductor light emitting device,its basic unit is
a light-emitting diode (LED). Thedigital tube display can be divided into 7-segment display and 8-segment display
according to the number of segments. The 8-segment display has one more LED unit than the 7-segment display (used
for decimal point display). Each segment of the 7-segment display is a separate LED. According to the connection
mode of the LED unit, the digital tube can be divided into a common anode digital tube and a common cathode digital
tube.

In the common cathode 7-segment display, all the cathodes (or negative electrodes) of the segmented LEDs are con-
nected together, so you should connect the common cathode to GND. To light up a segmented LED, you can set its
associated pin to“HIGH”.

In the common anode 7-segment display, the LED anodes (positive electrodes) of all segments are connected together,
so you should connect the common anode to“+5V”. To light up a segmented LED, you can set its associated pin
to“LOW”.

288 Chapter 7. Python Tutorial

ESP32 Learning Kit

Each part of the digital tube is composed of an LED. So when you use it, you also need to use a current limiting resistor.
Otherwise, the LED will be damaged. In this experiment, we use an ordinary common cathode one-digit digital tube.
As we mentioned above, you should connect the common cathode to GND. To light up a segmented LED, you can set
its associated pin to“HIGH”.

4.Wiring diagram

Note: The direction of the 7-segment display inserted into the breadboard is consistent with the wiring diagram, with
one more point in the lower right corner.

7.10. Project 081-Digit Digital Tube 289

ESP32 Learning Kit

5.Project code

The digital display is divided into 7 segments, and the decimal point display is divided into 1 segment. When certain
numbers are displayed, the corresponding segment will be lit. For example, when the number 1 is displayed, segments
b and c will be turned on.

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 08: 1-Digit Digital Tube”, and double
left-click “Project_08_One_Digit_Digital_Tube.py”.

290 Chapter 7. Python Tutorial

ESP32 Learning Kit

from machine import Pin
import time

a = Pin(16, Pin.OUT)
b = Pin(4, Pin.OUT)
c = Pin(5, Pin.OUT)
d = Pin(18, Pin.OUT)
e = Pin(19, Pin.OUT)
f = Pin(22, Pin.OUT)
g = Pin(23, Pin.OUT)
dp = Pin(17, Pin.OUT)

pins = [Pin(id,Pin.OUT) for id in [16, 4, 5, 18, 19, 22, 23, 17]]

def show(code):
for i in range(0, 8):

pins[i].value(~code & 1)
code = code >> 1

#Select code from 0 to 9
mask_digits = [0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8,0x80, 0x90]
for code in reversed(mask_digits):

show(code)
time.sleep(1)

6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

7.10. Project 081-Digit Digital Tube 291

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see that the 1-Digit 7-Segment Display will

display numbers from 9 to 0. Press“Ctrl+C”or click “Stop/Restart backend” to exit the program.

292 Chapter 7. Python Tutorial

ESP32 Learning Kit

7.11 Project 094-digit Digital Tube

1.Introduction

The 4-digit 7-segment display is a very practical display device and it is used for devices such as electronic clocks,
score counters and the number of people in the park. Because of the low price, easy to use, more and more projects
will use the 4 Digit 7-segment display. In this project, we use ESP32 to control the 4-digit 7-segment display to display
digits.

2.Components

ESP32*1 Breadboard*1 USB Cable*1

4-digit 7-segment display Module*1 220 Resistor*8 Jumper Wire*2

3.Component Knowledge

4-digit 7-segment displayIt is a device with common cathode and anode, its display principle is similar to the 1-
Digit digital tube display. Both of them have eight GPIO ports to control the digital tube display, that is 8 leds. However,
here is 4-digit, so it needs four GPIO ports to control the bit selection end. Our 4 - digit digital tube is common cathode.

The following figure shows the pin diagram of the 4-digit digital tube. G1, G2, G3 and G4 are the control pins.

7.11. Project 094-digit Digital Tube 293

ESP32 Learning Kit

Schematic Diagram

4.Wiring Diagram

294 Chapter 7. Python Tutorial

ESP32 Learning Kit

5.Test Code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 094-Digit Digital Tube”, then double
left-click “Project_09_Four_Digit_Digital_Tube.py”.

7.11. Project 094-digit Digital Tube 295

ESP32 Learning Kit

from machine import Pin
import time

#Pin of each digit of nixie tube
a = Pin(18, Pin.OUT)
b = Pin(13, Pin.OUT)
c = Pin(2, Pin.OUT)
d = Pin(16, Pin.OUT)
e = Pin(17, Pin.OUT)
f = Pin(19, Pin.OUT)
g = Pin(0, Pin.OUT)
dp = Pin(4, Pin.OUT)

G1 = Pin(21, Pin.OUT)
G2 = Pin(22, Pin.OUT)
G3 = Pin(14, Pin.OUT)
G4 = Pin(15, Pin.OUT)

#digital tube a to dp corresponding development board pins
d_Pins=[Pin(i,Pin.OUT) for i in [18,13,2,16,17,19,0,4]]
#Pin corresponding to digital tube segment G1, G2, G3, and G4
w_Pins=[Pin(i,Pin.OUT) for i in [21,22,14,15]]

number={
'0':
[1,1,1,1,1,1,0,0],#0
'1':
[0,1,1,0,0,0,0,0],#1
'2':
[1,1,0,1,1,0,1,0],#2

(continues on next page)

296 Chapter 7. Python Tutorial

ESP32 Learning Kit

(continued from previous page)

'3':
[1,1,1,1,0,0,1,0],#3
'4':
[0,1,1,0,0,1,1,0],#4
'5':
[1,0,1,1,0,1,1,0],#5
'6':
[1,0,1,1,1,1,1,0],#6
'7':
[1,1,1,0,0,0,0,0],#7
'8':
[1,1,1,1,1,1,1,0],#8
'9':
[1,1,1,1,0,1,1,0],#9

}

def display(num,dp):
global number
count=0
for pin in d_Pins:#displays the value of num

pin.value(number[num][count])
count+=1

if dp==1:
d_Pins[7].value(0)

def clear():
for i in w_Pins:

i.value(0)
for i in d_Pins:

i.value(1)
def showData(num):
#the hundreds, thousands, ones, and fractional values of a numeric value
d_num=num
location=d_num.find('.')
if location>0:

d_num=d_num.replace('.','')
while len(d_num)<4:

d_num='0'+d_num
for i in range(0,4):

time.sleep(2)
clear()
w_Pins[3-i].value(1)
if i==location-1:

display(d_num[i],1)
else:

display(d_num[i],0)
if location<0:

for i in range(0,4):
time.sleep(2)
clear()
w_Pins[3-i].value(1)
display(d_num[i],0)

while True:
(continues on next page)

7.11. Project 094-digit Digital Tube 297

ESP32 Learning Kit

(continued from previous page)

num='9016'
showData(num)

6.Test Result

Make sure the ESP32 has been connected to the computer, then click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that 4-digit 7-segment display displays

digitsand repeat these actions in an infinite loop. Press “Ctrl+C” or click “Stop/Restart backend” to exit the program.

298 Chapter 7. Python Tutorial

ESP32 Learning Kit

7.12 Project 108×8 Dot-matrix Display

1.Introduction

Dot matrix display is an electronic digital display device that can display information on machine, clocks, public trans-
port departure indicators and many other devices. In this project, we will use ESP32 to control 8x8 LED dot matrix in
a way that lights it up.

2.Components

ESP32*1 Breadboard*1 USB Cable*1

8*8 dot matrix module *1 220 Resistor*8 Jumper Wire*2

3.Component Knowledge

7.12. Project 108×8 Dot-matrix Display 299

ESP32 Learning Kit

8*8 dot matrix module The 8*8 dot matrix is composed of 64 LEDs, including row common anode and row common
cathode. Our module is row common anode, each row has a line connecting the positive pole of the LED, and the
column is connecting the negative pole of the LED lamp, as shown in the following figure :

4.Wiring Diagram

300 Chapter 7. Python Tutorial

ESP32 Learning Kit

5.Test Code

The code used in this tutorial is saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 108×8 Dot-matrix Display”, then dou-
ble left-click“Project_10_8×8_Dot_Matrix_Display.py”.

7.12. Project 108×8 Dot-matrix Display 301

ESP32 Learning Kit

from machine import Pin
import time

#Define the pin of the row and Set to output.
row1 = Pin(14, Pin.OUT)
row2 = Pin(26, Pin.OUT)
row3 = Pin(4, Pin.OUT)
row4 = Pin(27, Pin.OUT)
row5 = Pin(19, Pin.OUT)
row6 = Pin(16, Pin.OUT)
row7 = Pin(18, Pin.OUT)
row8 = Pin(17, Pin.OUT)
#Define the pins of the column and Set to output
col1 = Pin(32, Pin.OUT)
col2 = Pin(21, Pin.OUT)
col3 = Pin(22, Pin.OUT)
col4 = Pin(12, Pin.OUT)
col5 = Pin(0, Pin.OUT)
col6 = Pin(13, Pin.OUT)
col7 = Pin(33, Pin.OUT)
col8 = Pin(25, Pin.OUT)

#Sets the pin of the column to low level
col1.value(0)
col2.value(0)
col3.value(0)
col4.value(0)
col5.value(0)
col6.value(0)
col7.value(0)
col8.value(0)

(continues on next page)

302 Chapter 7. Python Tutorial

ESP32 Learning Kit

(continued from previous page)

#Since the column of the lattice has been set to low level,
#the corresponding row of the lattice will light up when the pin of the row is at high␣
→˓level
def Row(d):

if(d ==1):
row1.value(1) #Light the first line

if(d ==2):
row2.value(1) #Light the second line

if(d ==3):
row3.value(1)

if(d ==4):
row4.value(1)

if(d ==5):
row5.value(1)

if(d ==6):
row6.value(1)

if(d ==7):
row7.value(1)

if(d ==8):
row8.value(1)

#Close the lattice
def off():

row1.value(0)
row2.value(0)
row3.value(0)
row4.value(0)
row5.value(0)
row6.value(0)
row7.value(0)
row8.value(0)

try:
print("test...")
while True:

for num in range(1,10): #Light the lattice line by line
Row(num)
if(num == 9): #Because the lattice has only 8 rows, and I'm limiting it␣

→˓here, is equal to 9
off() #Close the lattice

time.sleep(0.2)

except:
pass

6.Test Result

Make sure the ESP32 has been connected to the computer, then click “Stop/Restart backend” .

7.12. Project 108×8 Dot-matrix Display 303

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see that the 8*8 dot matrix gradually lights up.

Press“Ctrl+C” or click “Stop/Restart backend”to exit the program.

304 Chapter 7. Python Tutorial

ESP32 Learning Kit

7.13 Project 1174HC595N Control 8 LEDs

1.Introduction

In previous projects, we learned how to light up an LED.

With only 32 IO ports on ESP32, how do we light up a lot of leds? Sometimes it is possible to run out of pins on
the ESP32, and you need to extend it with the shift register.You can use the 74HC595N chip to control 8 outputs at a
time, taking up only a few pins on your microcontroller. In addition, you can also connect multiple registers together
to further expand the output. In this project, we will use ESP32, 74HC595 chip and LED to make a flowing water light
to understand the function of the 74HC595 chip.

2.Components

ESP32*1 Breadboard*1 74HC595N chip*1 Jumper Wires

220 Resistor*8 Red LED*8 USB Cable*1

3.Component knowledge

74HC595N Chip: The 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert
the serial data of one byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly. With
this characteristic, the 74HC595 chip can be used to expand the IO ports of an ESP32. At least 3 ports are required to
control the 8 ports of the 74HC595 chip.

7.13. Project 1174HC595N Control 8 LEDs 305

ESP32 Learning Kit

The ports of the 74HC595 chip are described as follows

4.Wiring diagram

Note: Note the orientation in which the 74HC595N chip is inserted.

306 Chapter 7. Python Tutorial

ESP32 Learning Kit

5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 1174HC595N Control 8 LEDs”.

Select“my74HC595.py”, right click your mouse to select“Upload to /”wait for “my74HC595.py” to be uploaded to
ESP32, and then double left-click “Project_11_74HC595N_Controls_8_LEDs.py”.

7.13. Project 1174HC595N Control 8 LEDs 307

ESP32 Learning Kit

#Import time and my74HC595 modules.
from my74HC595 import Chip74HC595
import time

#Create a Chip74HC595 object and configure pins
chip = Chip74HC595(14, 12, 13)
ESP32-14: 74HC595-DS(14)
ESP32-12: 74HC595-STCP(12)
ESP32-13: 74HC595-SHCP(11)

(continues on next page)

308 Chapter 7. Python Tutorial

ESP32 Learning Kit

(continued from previous page)

#The first for loop makes LED Bar display separately from left to right
#while the second for loop make it display separately from right to left.
while True:

x = 0x01
for count in range(8):

chip.shiftOut(1, x)
x = x<<1;
time.sleep_ms(300)

x = 0x01
for count in range(8):

chip.shiftOut(0, x)
x = x<<1
time.sleep_ms(300)

6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that the 8 LEDs start flashing in flowing

water mode. Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

7.13. Project 1174HC595N Control 8 LEDs 309

ESP32 Learning Kit

7.14 Project 12Active Buzzer

1.Introduction

Active buzzer is a sound component that is widely used as a sound component for computersprintersalarmselectronic
toys and phonestimers etc. It has an internal vibration source, just by connecting to a 5V power supply, it can continu-
ously buzz. In this project, we will use ESP32 to control the active buzzer to beep.

2.Components

ESP32*1 Breadboard*1 Active buzzer*1

NPN Transistor(S8050)*1 1k Resistor*1 Jumper Wires USB Cable*1

3.Component knowledge

310 Chapter 7. Python Tutorial

ESP32 Learning Kit

Active buzzer: Active buzzer inside has a simple oscillator circuit, which can convert constant direct current into a
certain frequency pulse signal. Once active buzzer receives a high level, it will produce sound. Passive buzzer is an
internal without vibration source integrated electronic buzzer, it must be driven by 2k to 5k square wave, rather than
a DC signal. The two buzzers are very similar in appearance, but one buzzer with a green circuit board is a passive
buzzer, while the other buzzer with black tape is an active buzzer. Passive buzzers don’t have positive polarity, but
active buzzers have. As shown below:

Transistor:

Because the buzzer requires such large current that GPIO of ESP32 output capability cannot meet the requirement, a
transistor of NPN type is needed here to amplify the current.

7.14. Project 12Active Buzzer 311

ESP32 Learning Kit

Transistor, the full name: semiconductor transistor, is a semiconductor device that controls current. Transistorcan be
used to amplify weak signal, or works as a switch. It has three electrodes(PINs): base (b), collector © and emitter (e).
When there is current passing between “be”, “ce” will allow several-fold current (transistor magnification) pass, at this
point, transistor works in the amplifying area. When current between “be” exceeds a certain value, “ce” will not allow
current to increase any longer, at this point, transistor works in the saturation area. Transistor has two types as shown
below: PNP and NPN.

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

Based on the transistor’s characteristics, it is often used as a switch in digital circuits. As micro-controller’s capacity
to output current is very weak, we will use transistor to amplify current and drive large-current components.

When using NPN transistor to drive buzzer, we often adopt the following method. If GPIO outputs high level, current
will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs low level, no current
flows through R1, the transistor will not be conducted, and buzzer will not sound.

When using PNP transistor to drive buzzer, we often adopt the following method. If GPIO outputs low level, current
will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs high level, no
current flows through R1, the transistor will not be conducted, and buzzer will not sound.

4.Wiring diagram

312 Chapter 7. Python Tutorial

ESP32 Learning Kit

Note: The buzzer power supply in this circuit is 5V. On a 3.3V power supply, the buzzer can work, but will reduce the
loudness.

5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→”Project 12: Active Buzzer”, and then double
left-click “Project_12_Active_Buzzer.py”.

7.14. Project 12Active Buzzer 313

ESP32 Learning Kit

from machine import Pin
import time

buzzer = Pin(15, Pin.OUT) # create buzzer object from Pin 15, Set Pin 15 to output

try:
while True:

buzzer.value(1) # Set buzzer turn on
time.sleep(0.5) # Sleep 0.5s
buzzer.value(0) # Set buzzer turn off
time.sleep(0.5) # Sleep 0.5s

except:
pass

6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

314 Chapter 7. Python Tutorial

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see that the active buzzer beeps. Press“Ctrl+C”or

click “Stop/Restart backend”to exit the program.

7.14. Project 12Active Buzzer 315

ESP32 Learning Kit

7.15 Project 13Passive Buzzer

1.Introduction:

In a previous project, we studied an active buzzer, which can only make a sound and may make you feel very
monotonous. In this project, we will learn a passive buzzer and use the ESP32 control it to work. Unlike the active
buzzer, the passive buzzer can emit sounds of different frequencies.

2.Components

ESP32*1 Breadboard*1 Passive Buzzer *1

NPN Transistor(S8050)*1 1kResistor*1 Jumper Wires USB Cable*1

3.Component knowledge

Passive buzzer: A passive buzzer is an integrated electronic buzzer with no internal vibration source and it has to be

316 Chapter 7. Python Tutorial

ESP32 Learning Kit

driven by 2K-5K square waves, not DC signals. The two buzzers are very similar in appearance, but one buzzer with a
green circuit board is a passive buzzer and the other buzzer with black tape is an active buzzer. Passive buzzers cannot
distinguish between positive polarity while active buzzers can.

Transistor: Please refer to Project 12.

4.Wiring diagram:

5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→”Project 13: Passive Buzzer”, and then double
left-click “Project_13_Passive_Buzzer.py”.

7.15. Project 13Passive Buzzer 317

ESP32 Learning Kit

from machine import Pin
import time

#Initialize the passive buzzer
buzzer = Pin(15,Pin.OUT)

#Simulate two different frequencies
while True:

#Output 500HZ frequency sound
for i in range(80):

buzzer.value(1)
time.sleep(0.001)
buzzer.value(0)
time.sleep(0.001)

#Output 250HZ frequency sound
for i in range(100):

buzzer.value(1)
time.sleep(0.002)
buzzer.value(0)
time.sleep(0.002)

6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

318 Chapter 7. Python Tutorial

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see that the passive buzzer sounds alarm.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

7.15. Project 13Passive Buzzer 319

ESP32 Learning Kit

7.16 Project 14: Mini Table Lamp

1.Introduction

Do you know that the ESP32 can light up an LED when you press a button? In this project, we will use ESP32a button
switch and an LED to make a mini table lamp.

2.Components

ESP32*1 Breadboard*1 Button*1 Button Cap*1

10K Resistor*1 Red LED*1 22 Resistor*1 USB Cable*1 Jumper Wires

3.Component knowledge

Button: A button can control the circuit on and off, the button is plugged into a circuit, the circuit is disconnected when
the button is not pressed. The circuit works when you press the button, but breaks again when you release it. Why does
it only work when you press it? It starts from the internal structure of the button, which don’t allow current to travel
from one end of the button to the other before it is pressed; When pressed, a metal strip inside the button connects the
two sides to allow electricity to pass through.

The internal structure of the button is shown in the figure . Before the button is pressed, 1 and 2 are
on, 3 and 4 are also on, but 1, 3 or 1, 4 or 2, 3 or 2, 4 are off(not working). Only when the button is pressed, 1, 3 or 1,
4 or 2, 3 or 2, 4 are on.

The button switch is one of the most commonly used components in circuit design.

Schematic diagram of the button:

320 Chapter 7. Python Tutorial

ESP32 Learning Kit

What is button shake javascript?

We think of the switch circuit as “press the button and turn it on immediately”, “press it again and turn it off immedi-
ately”. In fact, this is not the case.

The button usually uses a mechanical elastic switch, and the mechanical elastic switch will produce a series of shake
javascript due to the elastic action at the moment when the mechanical contact is opened and closed (usually about
10ms). As a result, the button switch will not immediately and stably turn on the circuit when it is closed, and it will
not be completely and instantaneously disconnected when it is turned off.

How to eliminate the [shake](javascript:;)?

There are two common methods, namely fix [shake](javascript:;) in the software and hardware. We only discuss the
[shake](javascript:;) removal in the software.

We already know that the [shake](javascript:;) time generated by elasticity is about 10ms, and the delay command can
be used to delay the execution time of the command to achieve the effect of [shake](javascript:;) removal.

Therefore, we delay 0.02s in the code to achieve the key anti-shake function.

7.16. Project 14: Mini Table Lamp 321

ESP32 Learning Kit

4.Wiring Diagram

Note:

How to connect the LED

How to identify the 220 5-band resistor and 10K 5-band resistor

322 Chapter 7. Python Tutorial

ESP32 Learning Kit

5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→”Project 14: Mini Table Lamp”, and then double
left-click “Project_14_Mini_Table_Lamp.py”.

7.16. Project 14: Mini Table Lamp 323

ESP32 Learning Kit

from machine import Pin
import time

led = Pin(4, Pin.OUT) # create LED object from Pin 4,Set Pin 4 to output ␣
→˓

button = Pin(15, Pin.IN, Pin.PULL_UP) #Create button object from Pin15,Set GP15 to input

#Customize a function and name it reverseGPIO(),which reverses the output level of the␣
→˓LED
def reverseGPIO():

if led.value():
led.value(0) #Set led turn off

else:
led.value(1) #Set led turn on

try:
while True:

if not button.value():
time.sleep_ms(20)
if not button.value():

reverseGPIO()
while not button.value():

time.sleep_ms(20)
except:

pass

6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

324 Chapter 7. Python Tutorial

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see that press the push button switch, the LED
turns on. When it is released, the LED is still on. Press it again, and the LED turns off. When it is released, the LED

stays off. Doesn’t it look like a mini table lamp? Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

7.16. Project 14: Mini Table Lamp 325

ESP32 Learning Kit

7.17 Project 15Tilt And LED

1.Introduction

The ancients without electronic clock, so the hourglass are invented to measure time. The hourglass has a large capacity
on both sides, and which is filled with fine sand on one side. What’s more, there is a small channel in the middle, which
can make the hourglass stand upright , the side with fine sand is on the top. due to the effect of gravity,the fine sand will
flow down through the channel to the other side of the hourglass. When the sand reaches the bottom, turn it upside down
and record the number of times it has gone through the hourglass, therefore, the next day we can know the approximate
time of the day by it.

In this project, we will use ESP32 to control the tilt switch and LED lights to simulate an hourglass and make an
electronic hourglass.

2.Components

ESP32*1 Tilt Switch*1 Red LED*4 10K Resistor*1

Breadboard*1 220 Resistor*4 USB Cable*1 Jumper Wires

3.Component knowledge

326 Chapter 7. Python Tutorial

ESP32 Learning Kit

Tilt switch is also called digital switch. Inside is a metal ball that can roll. The principle of rolling the metal ball to
contact with the conductive plate at the bottom, which is used to control the on and off of the circuit. When it is a rolling
ball tilt sensing switch with single directional trigger, the tilt sensor is tilted toward the trigger end (two gold-plated pin
ends), the tilt switch is in a closed circuit and the voltage at the analog port is about 5V(binary number is 1023).

In this way, the LED will light up. When the tilting switch is in horizontal position or tilting to the other end, the tilting
switch is in open state the voltage of the analog port is about 0V (binary number is 0), the LED will turn off. In the
program, we judge the state of the switch based on whether the voltage value of the analog port is greater than 2.5V
(binary number is 512).

The internal structure of the tilt switch is used here to illustrate how it works, as shown below:

7.17. Project 15Tilt And LED 327

ESP32 Learning Kit

4.Wiring Diagram

Note:

How to connect the LED

How to identify the 220 5-band resistor and 10K 5-band resistor

328 Chapter 7. Python Tutorial

ESP32 Learning Kit

5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 15: Tilt And LED”, and then double
left-click “Project_15_Tilt_And_LED.py”.

7.17. Project 15Tilt And LED 329

ESP32 Learning Kit

from machine import Pin
import time

led1 = Pin(16, Pin.OUT) # create LED object from Pin 2,Set Pin 2 to output
led2 = Pin(17, Pin.OUT) # create LED object from Pin 0,Set Pin 0 to output
led3 = Pin(18, Pin.OUT) # create LED object from Pin 4,Set Pin 4 to output
led4 = Pin(19, Pin.OUT) # create LED object from Pin 16,Set Pin 16 to output
Tilt_Sensor = Pin(15,Pin.IN) #Create tilt object from Pin15,Set GP15 to input

while True:
if(Tilt_Sensor.value() == 0) : #when the value of tilt sensor is 0

led1.value(1) # led1 turn on
time.sleep_ms(200)#delay
led2.value(1) # led2 turn on
time.sleep_ms(200)#delay
led3.value(1) # led3 turn on
time.sleep_ms(200)#delay
led4.value(1) # led4 turn on
time.sleep_ms(200)#delay

else : #when the value of tilt sensor is 1
led4.value(0) # led4 turn off
time.sleep_ms(200)#delay
led3.value(0) # led3 turn off
time.sleep_ms(200)#delay
led2.value(0) # led2 turn off
time.sleep_ms(200)#delay
led1.value(0) # led1 turn off
time.sleep_ms(200)#delay

6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

330 Chapter 7. Python Tutorial

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see that when you tilt the breadboard to an angle,
the LEDs will light up one by one. When you turn the breadboard to the original angle, the LEDs will turn off one by

one. Like the hourglass, the sand will leak out over time. Press“Ctrl+C”or click “Stop/Restart backend”to exit the
program.

7.17. Project 15Tilt And LED 331

ESP32 Learning Kit

7.18 Project 16: I2C 128×32 LCD

1.Introduction

In everyday life, we can do all kinds of experiments with the display module and also DIY a variety of small objects.
For example, you can make a temperature meter with a temperature sensor and display, or make a distance meter with an
ultrasonic module and display. In this project, we will use the LCD_128X32_DOT module as the display and connect it
to the ESP32, which will be used to control the LCD_128X32_DOT display to display various English words, common
symbols and numbers.

2.Components

ESP32*1 Breadboard*1

LCD_128X32_DOT*1 M-F Dupont Wires USB Cable*1

3.Component knowledge

LCD_128X32_DOT: It is an LCD module with 128*32 pixels and its driver chip is ST7567A. The module uses the
IIC communication mode, while the code contains a library of all alphabets and common symbols that can be called
directly. When using, we can also set it in the code so that the English letters and symbols show different text sizes. To
make it easy to set up the pattern display, we also provide a mold capture software that converts a specific pattern into
control code and then copies it directly into the test code for use.

Schematic diagram of LCD_128X32_DOT

332 Chapter 7. Python Tutorial

ESP32 Learning Kit

Features:

Pixel: 128*32 character

Operating voltage(chip)4.5V to 5.5V

Operating current100mA (5.0V)

Optimal operating voltage(module):5.0V

4.Wiring Diagram

7.18. Project 16: I2C 128×32 LCD 333

ESP32 Learning Kit

5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 16: I2C 128×32
LCD”. Select“lcd128_32.py”and “lcd128_32_fonts.py”right-click your mouse to select“Upload
to/”wait for“lcd128_32.py”and“lcd128_32_fonts.py”to be uploaded to ESP32and then double left-
click“Project_16_I2C_128_32_LCD.py”.

334 Chapter 7. Python Tutorial

ESP32 Learning Kit

7.18. Project 16: I2C 128×32 LCD 335

ESP32 Learning Kit

import machine
import time
import lcd128_32_fonts
from lcd128_32 import lcd128_32

#i2c config
clock_pin = 22
data_pin = 21
bus = 0
i2c_addr = 0x3f
use_i2c = True

def scan_for_devices():
i2c = machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_pin))
devices = i2c.scan()
if devices:

for d in devices:
print(hex(d))

else:
print('no i2c devices')

if use_i2c:
scan_for_devices()
lcd = lcd128_32(data_pin, clock_pin, bus, i2c_addr)

lcd.Clear()

lcd.Cursor(0, 4)
(continues on next page)

336 Chapter 7. Python Tutorial

ESP32 Learning Kit

(continued from previous page)

lcd.Display("KEYESTUDIO")
lcd.Cursor(1, 0)
lcd.Display("ABCDEFGHIJKLMNOPQR")
lcd.Cursor(2, 0)
lcd.Display("123456789+-*/<>=$@")
lcd.Cursor(3, 0)
lcd.Display("%^&(){}:;'|?,.~\\[]")
"""
while True:

scan_for_devices()
time.sleep(0.5)

"""

6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that the 128X32LCD module dis-
play will show“KEYESTUDIO”at the first line,“ABCDEFGHIJKLMNOPQR”will be displayed at the second line,
”123456789±*/<>=$@”will be shown at the third line and“%^&(){}:;’|?,.~\[]”will be displayed at the fourth line.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

7.18. Project 16: I2C 128×32 LCD 337

ESP32 Learning Kit

7.19 Project 17Small Fan

1.Introduction

In hot summer, we need electric fans to cool us down, so in this project, we will use a ESP32 to control a DC motor
and small fan blades to make a small electric fan.

2.Components

338 Chapter 7. Python Tutorial

ESP32 Learning Kit

ESP32*1 Breadboard*1 6 AA Battery Holder*1 Breadboard Power Module*1

AA Battery(Self-prepared)*6 Fan*1 DC Motor*1 NPN Transistor (S8050)*1

PNP Transistor (S8550)*1 1K Resistor*1 Jumper Wire Diode*1

USB Ca-
ble*1

Keyestudio Breadboard Power Supply Module

Introduction:

This breadboard power supply module is compatible with 5V and 3.3V, which can be applied to MB102 breadboard.
The module contains two channels of independent control, powered by the USB all the way.

The output voltage is constant for the DC5V, and another way is powered by DC6.5-12V, output controlled by the slide
switch, respectively for DC 5V and DC 3.3V.

If the other power supply is DC 6.5-12v, when the slide switch is switched to +5V, the output voltages of the left and
right lines of the module are DC 5V. When the slide switch is switched to +3V, the output voltage of the USB power
supply terminal of the module is DC 5V, and the output voltage of the DC 6.5-12V power supply terminal of the other
power supply is DC3.3V.

3.Wiring Diagram 1

We use the S8050NPN transistor) to control the motor

7.19. Project 17Small Fan 339

ESP32 Learning Kit

Wire up first, then connect a fan at the DC motor

5.Test Code 1

Codes used in this tutorial are saved in 2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 17: Small Fan”, and then double left-
click“Project_17.1_ Small_Fan.py”.

340 Chapter 7. Python Tutorial

ESP32 Learning Kit

from machine import Pin
import time

motor = Pin(15, Pin.OUT) # create S8050 object from Pin 15, Set Pin 15 to output

try:
while True:

motor.value(1) # Set motor turn on
time.sleep(4) # Sleep 4s
motor.value(0) # Set motoe turn off
time.sleep(2) # Sleep 2s

except:
pass

Ensure the ESP32 is connecteed to the computer and tap “Stop/Restart backend”.

6.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

7.19. Project 17Small Fan 341

ESP32 Learning Kit

Power up and click “Run current script”, the code starts to be executed and you’ll see that the small fan turn for 4s
and stop for 2s.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

342 Chapter 7. Python Tutorial

ESP32 Learning Kit

7.Wiring Diagram 2

We use the S8050PNP transistor) to control the motor

Wire up first, then connect a fan at the DC motor

8.Test Code 2

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

7.19. Project 17Small Fan 343

ESP32 Learning Kit

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 17Small Fan”, and then double left-
click“Project_17.2_ Small_Fan.py”.

from machine import Pin
import time

motor = Pin(15, Pin.OUT) # create S8550 object from Pin 15, Set Pin 15 to output

try:
while True:

motor.value(0) # Set motor turn on
time.sleep(4) # Sleep 4s
motor.value(1) # Set motoe turn off
time.sleep(2) # Sleep 2s

except:
pass

9.Test Result 2

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

344 Chapter 7. Python Tutorial

ESP32 Learning Kit

Power up and click “Run current script”, the code starts to be executed and you’ll see that the small fan turn for 4s

and stop for 2s. Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

7.19. Project 17Small Fan 345

ESP32 Learning Kit

7.20 Project 18Dimming Light

1.Introduction

A potentiometer is a three-terminal resistor with sliding or rotating contacts that forms an adjustable voltage divider.
It works by changing the position of the sliding contacts across a uniform resistance. In the potentiometer, the entire
input voltage is applied across the whole length of the resistor, and the output voltage is the voltage drop between the
fixed and sliding contact.

In this project, we will learn how to use ESP32 to read the values of the potentiometer, and make a dimming lamp with
LED.

2.Components

ESP32*1 Breadboard*1 Potentiometer*1 Red LED*1

220Resistor*1 Jumper Wires USB Cable*1

3.Component knowledge

Adjustable potentiometer: It is a kind of resistor and an analog electronic component, which has two states of 0 and
1(high level and low level). The analog quantity is different, its data state presents a linear state such as 1 ~ 1024.

ADC : An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or binary
form consisting of 1s and 0s. The range of our ADC on ESP32 is 12 bits, that means the resolution is 2^12=4096, and
it represents a range (at 3.3V) will be divided equally to 4096 parts. The rage of analog values corresponds to ADC
values. So the more bits the ADC has, the denser the partition of analog will be and the greater the precision of the
resulting conversion.

346 Chapter 7. Python Tutorial

ESP32 Learning Kit

Subsection 1: the analog in rang of 0V—3.3/4095 V corresponds to digital 0;

Subsection 2: the analog in rang of 3.3/4095 V—2*3.3 /4095V corresponds to digital 1;

. . .

The following analog will be divided accordingly.

The conversion formula is as follows:

DACThe reversing of this process requires a DAC, Digital-to-Analog Converter. The digital I/O port can output
high level and low level (0 or 1), but cannot output an intermediate voltage value. This is where a DAC is useful.
ESP32 has two DAC output pins with 8-bit accuracy, GPIO25 and GPIO26, which can divide VCC(here is 3.3V) into
2^8=256 parts. For example, when the digital quantity is 1, the output voltage value is 3.3/256 *1 V, and when the
digital quantity is 128, the output voltage value is 3.3/256*128=1.65V, the higher the accuracy of DAC, the higher the
accuracy of output voltage value will be.

The conversion formula is as follows:

ADC on ESP32

ESP32 has 16 pins can be used to measure analog signals. GPIO pin sequence number and analog pin definition are
shown in the following table

DAC on ESP32

ESP32 has two 8-bit digital analog converters to be connected to GPIO25 and GPIO26 pins, respectively, and it is
immutable. As shown in the following table

We connect the potentiometer to the analog IO port of ESP32 to read the ADC value, DAC value and voltage value of
the potentiometer, please refer to the wiring diagram below

7.20. Project 18Dimming Light 347

ESP32 Learning Kit

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 18Dimming Light”and then double left-
click “Project_18.1_Read_Potentiometer_Analog_Value.py”.

348 Chapter 7. Python Tutorial

ESP32 Learning Kit

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read ADC value once every 0.1seconds, convert ADC value to DAC value and output it,
and print these data to “Shell”.
try:

while True:
adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,"V")
time.sleep(0.1)

except:
pass

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

7.20. Project 18Dimming Light 349

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE
will print the ADC value, DAC value and voltage value of the potentiometer, turn the potentiometer handle, the ADC

value and voltage value will change. Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

350 Chapter 7. Python Tutorial

ESP32 Learning Kit

5.Wiring diagram of the dimming lamp

In the previous step, we read the ADC value, DAC value and voltage value of the potentiometer. Now we need to convert
the ADC value of the potentiometer into the brightness of the LED to make a lamp that can adjust the brightness.The
wiring diagram is as follows:

7.20. Project 18Dimming Light 351

ESP32 Learning Kit

6.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 18: Dimming Light”and then double
left-click“Project_18.2_Dimming_Light.py”.

352 Chapter 7. Python Tutorial

ESP32 Learning Kit

from machine import Pin,PWM,ADC
import time

pwm =PWM(Pin(15,Pin.OUT),1000)
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_10BIT)

try:
while True:

adcValue=adc.read()
pwm.duty(adcValue)
print(adc.read())
time.sleep_ms(100)

except:
pwm.deinit()

7.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

7.20. Project 18Dimming Light 353

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see that turn the potentiometer handle and the

brightness of the LED will change accordingly. Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

354 Chapter 7. Python Tutorial

ESP32 Learning Kit

7.21 Project 19Flame Alarm

1.Introduction

Fire is a terrible disaster and fire alarm systems are very useful in housescommercial buildings and factories. In this
project, we will use ESP32 to control a flame sensor, a buzzer and a LED to simulate fire alarm devices. This is a
meaningful maker activity.

2.Components

7.21. Project 19Flame Alarm 355

ESP32 Learning Kit

ESP32*1 Breadboard*1 Red LED*1 Active Buzzer*1

Flame Sensor*1 220 Resistor*1 10KResistor*1 Jumper Wires

NPN Transistor(S8050)*1 1k Resistor*1 USB Cable*1

3.Component knowledge

The flame emits a certain amount IR light that is invisible to the human eye, but our flame sensor can detect it and
alert a microcontroller(such as ESP32) that a fire has been detected. It has a specially designed infrared receiver tube
to detect the flame and then convert the flame brightness into a fluctuating level signal. The short pin of the receiving
triode is negative pole and the other long pin is positive pole. We should connect the short pin (negative) to 5V and the
long pin(positive) to the analog pin, a resistor and GND. As shown in the figure below

356 Chapter 7. Python Tutorial

ESP32 Learning Kit

Note: Since vulnerable to radio frequency radiation and temperature changes, the flame sensor should be kept away
from heat sources like radiators, heaters and air conditioners, as well as direct irradiation of sunlight, headlights and
incandescent light.

4.Read the ADC value, DAC value and voltage value of the flame sensor

We first use a simple code to read the ADC value, DAC value and voltage value of the flame sensor and print them out.
Please refer to the wiring diagram below

7.21. Project 19Flame Alarm 357

ESP32 Learning Kit

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→”Project 19: Flame Alarm”, and then double
left-click “Project_19.1_Read_Analog_Value_Of_Flame_Sensor.py”.

358 Chapter 7. Python Tutorial

ESP32 Learning Kit

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read ADC value once every 0.1seconds, convert ADC value to DAC value and output it,
and print these data to “Shell”.
try:

while True:
adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,"V")
time.sleep(0.1)

except:
pass

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

7.21. Project 19Flame Alarm 359

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE will
print the ADC valueDAC value and voltage value of the flame sensor. When the flame is close to the flame sensor, the
ADC value, DAC value and voltage value increase; Conversely, the ADC value, DAC value and voltage value decrease.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

360 Chapter 7. Python Tutorial

ESP32 Learning Kit

5.Wiring diagram of the flame alarm

Next, we will use a flame sensor, a buzzer, and a LED to make an interesting project, that is flame alarm. When flame
is detected, the LED flashes and the buzzer alarms.

7.21. Project 19Flame Alarm 361

ESP32 Learning Kit

6.Project code:Note the threshold of 500 in the code can be reset itself as required)

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 19: Flame Alarm”, and then double
left-click“Project 19Flame Alarm”.

362 Chapter 7. Python Tutorial

ESP32 Learning Kit

from machine import ADC, Pin
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)
create LED object from Pin 15,Set Pin 15 to output
led = Pin(15, Pin.OUT)
create buzzer object from Pin 4, Set Pin 4 to output
buzzer = Pin(4, Pin.OUT)

If the flame sensor detects a flame, the buzzer will beep
and the LED will blink when the analog value is greater than 500
Otherwise, the buzzer does not sound and the LED goes off
while True:

adcVal=adc.read()
if adcVal >500:

buzzer.value(1) # Set buzzer turn on
led.value(1) # Set led turn on
time.sleep(0.5) # Sleep 0.5s
buzzer.value(0)
led.value(0) # Set led turn off
time.sleep(0.5) # Sleep 0.5s

else:
buzzer.value(0) # Set buzzer turn off
led.value(0) # Set led turn off

7.Project result

7.21. Project 19Flame Alarm 363

ESP32 Learning Kit

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that when the flame sensor detects the flame,
the LED flashes and the buzzer alarms. Otherwise, the LED does not light, the buzzer does not sound. Press“Ctrl+C”or

click “Stop/Restart backend”to exit the program.

364 Chapter 7. Python Tutorial

ESP32 Learning Kit

7.22 Project 20Night Lamp

1.Introduction

Sensors or components are ubiquitous in our daily life. For example, some public street lamps will automatically turn
on at night and turn off during the day. Why? In fact, this make use of a photosensitive element that senses the intensity
of external ambient light. When the outdoor brightness decreases at night, the street lights will turn on automatically.
In the daytime, the street lights will automatically turn off. the principle of which is very simple, In this Project, we
use ESP32 to control a LED to achieve the effect of the street light.

2.Components

ESP32*1 Breadboard*1 Red LED*1 10KResistor*1

Photoresistor*1 220Resistor*1 Jumper Wires USB Cable*1

3.Component knowledge

Photoresistor : It is a kind of photosensitive resistance, its principle is that the photoresistor surface receives brightness
(light) to reduce the resistance, the resistance value will change with the detected intensity of the ambient light . With
this characteristic, we can use the photosensitive resistance to detect the light intensity. Photosensitive resistance and
its electronic symbol are as follows

The following circuit is used to detect changes in resistance values of photoresistors

7.22. Project 20Night Lamp 365

ESP32 Learning Kit

In the circuit above, when the resistance of the photoresistor changes due to the change of light intensity, the voltage
between the photoresistor and resistance R2 will also change. Thus, the intensity of light can be obtained by measuring
this voltage.

4.Read the ADC value, DAC value and voltage value of the photoresistor

We first use a simple code to read the ADC value, DAC value and voltage value of the photoresistor and print them out.
Please refer to the following wiring diagram

366 Chapter 7. Python Tutorial

ESP32 Learning Kit

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→”Project 20: Night Lamp”and then double left-
click “Project_20.1_Read_Photosensitive_Analog_Value.py””.

7.22. Project 20Night Lamp 367

ESP32 Learning Kit

Import Pin, ADC and DAC modules.
from machine import ADC,Pin,DAC
import time

Turn on and configure the ADC with the range of 0-3.3V
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

Read ADC value once every 0.1seconds, convert ADC value to DAC value and output it,
and print these data to “Shell”.
try:

while True:
adcVal=adc.read()
dacVal=adcVal//16
voltage = adcVal / 4095.0 * 3.3
print("ADC Val:",adcVal,"DACVal:",dacVal,"Voltage:",voltage,"V")
time.sleep(0.1)

except:
pass

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

368 Chapter 7. Python Tutorial

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE will
print the ADC valueDAC value and voltage value of the photoresistor. When the light intensity around the photoresistor
is gradually reduced, the ADC valueDAC value and voltage value will gradually increase. On the contrary, the ADC

value, DAC value and voltage value decreases gradually. Press“Ctrl+C”or click “Stop/Restart backend”to exit the
program.

7.22. Project 20Night Lamp 369

ESP32 Learning Kit

5.Wiring diagram of the light-controlled lamp

We made a small dimming lamp in the front, now we will make a light controlled lamp. The principle is the same, that
is, the ESP32 takes the ADC value of the sensor, and then adjusts the brightness of the LED.

370 Chapter 7. Python Tutorial

ESP32 Learning Kit

6.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→”Project 20: Night Lamp”and then double left-
click “Project_20.2_Night_Lamp.py”.

from machine import Pin,PWM,ADC
import time

pwm =PWM(Pin(15,Pin.OUT),1000)
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_10BIT)

(continues on next page)

7.22. Project 20Night Lamp 371

ESP32 Learning Kit

(continued from previous page)

try:
while True:

adcValue=adc.read()
pwm.duty(adcValue)
print(adc.read())
time.sleep_ms(100)

except:
pwm.deinit()

7.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

Click “Run current script”, the code starts to be executed and you’ll see that when the intensity of light around
the photoresistor is reduced, the LED will be bright, on the contrary, the LED will be dim. Press“Ctrl+C”or

click “Stop/Restart backend”to exit the program.

372 Chapter 7. Python Tutorial

ESP32 Learning Kit

7.23 Project 21Temperature Instrument

1.Introduction

Thermistor is a kind of resistor whose resistance depends on temperature changes, which is widely used in gardening,
home alarm system and other devices. Therefore, we can use the feature to make a temperature instrument.

2.Components

ESP32*1 Breadboard*1 Thermistor*1 10KResistor*1

M-F Dupont Wires LCD 128X32 DOT*1 Jumper Wires USB Cable*1

3.Component knowledge

Thermistor: A Thermistor is a temperature sensitive resistor. When it senses a change in temperature, the resistance
of the Thermistor will change. We can take advantage of this characteristic by using a Thermistor to detect temperature
intensity. A Thermistor and its electronic symbol are shown below:

7.23. Project 21Temperature Instrument 373

ESP32 Learning Kit

The relationship between resistance value and temperature of a thermistor is

Where:

Rt is the thermistor resistance under T2 temperature;

R is the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of e;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15 + Celsius temperature.

For the parameters of the Thermistor, we use: B=3950, R=10k, T1=25.

The circuit connection method of the Thermistor is similar to photoresistor, as the following

374 Chapter 7. Python Tutorial

ESP32 Learning Kit

We can use the value measured by the ADC converter to obtain the resistance value of Thermistor, and then we can use
the formula to obtain the temperature value.

Therefore, the temperature formula can be derived as:

4.Read the value of the Thermistor

First we will learn the thermistor to read the current ADC value, voltage value and temperature value and print them
out. Please connect the wires according to the wiring diagram below

7.23. Project 21Temperature Instrument 375

ESP32 Learning Kit

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 21: Temperature Instrument, and then
double left-click “Project_21.1_Read_the_thermistor_analog_value.py”.

376 Chapter 7. Python Tutorial

ESP32 Learning Kit

from machine import Pin, ADC
import time
import math

#Set ADC
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

try:
while True:

adcValue = adc.read()
voltage = adcValue / 4095 * 3.3
Rt = 10 * voltage / (3.3-voltage)
tempK = (1 / (1 / (273.15+25) + (math.log(Rt/10)) / 3950))
tempC = (tempK - 273.15)
print("ADC value:",adcValue," Voltage:",voltage,"V"," Temperature: ",tempC,"C

→˓");
time.sleep(1)

except:
pass

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend”.

7.23. Project 21Temperature Instrument 377

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see that the “Shell” window of Thonny IDE
will continuously display the thermistor’s current ADC valuevoltage value and temperature value. Try pinching the
thermistor with your index finger and thumb (don’t touch wires) for a while, and you will see the temperature increase.

Press“Ctrl+C”or click “Stop/Restart backend”to exit the program.

378 Chapter 7. Python Tutorial

ESP32 Learning Kit

5.Wiring diagram of the temperature instrument

6.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

7.23. Project 21Temperature Instrument 379

ESP32 Learning Kit

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 21: Temperature Instrument”. Se-
lect“lcd128_32.py”and “lcd128_32_fonts.py”right-click your mouse to select“Upload to/”wait for“lcd128_32.py”an
“lcd128_32_fonts.py”to be uploaded to ESP32and double left-click“Project_21.2_Temperature_Instrument.py”.

380 Chapter 7. Python Tutorial

ESP32 Learning Kit

from machine import Pin, ADC, I2C
import machine
import time
import math
import lcd128_32_fonts
from lcd128_32 import lcd128_32

(continues on next page)

7.23. Project 21Temperature Instrument 381

ESP32 Learning Kit

(continued from previous page)

#Set ADC
adc=ADC(Pin(36))
adc.atten(ADC.ATTN_11DB)
adc.width(ADC.WIDTH_12BIT)

#i2c config
clock_pin = 22
data_pin = 21
bus = 0
i2c_addr = 0x3f
use_i2c = True

def scan_for_devices():
i2c = machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_pin))
devices = i2c.scan()
if devices:

for d in devices:
print(hex(d))

else:
print('no i2c devices')

try:
while True:

adcValue = adc.read()
voltage = adcValue / 4095 * 3.3
Rt = 10 * voltage / (3.3-voltage)
tempK = (1 / (1 / (273.15+25) + (math.log(Rt/10)) / 3950))
tempC = int(tempK - 273.15)
if use_i2c:

scan_for_devices()
lcd = lcd128_32(data_pin, clock_pin, bus, i2c_addr)

lcd.Clear()
lcd.Cursor(0, 0)
lcd.Display("Voltage:")
lcd.Cursor(0, 8)
lcd.Display(str(voltage))
lcd.Cursor(0, 20)
lcd.Display("V")
lcd.Cursor(2, 0)
lcd.Display("Temperature:")
lcd.Cursor(2, 12)
lcd.Display(str(tempC))
lcd.Cursor(2, 15)
lcd.Display("C")
time.sleep(0.5)

except:
pass

7.Project result

Make sure the ESP32 has been connected to the computer, click “Stop/Restart backend” .

382 Chapter 7. Python Tutorial

ESP32 Learning Kit

Click “Run current script”, the code starts to be executed and you’ll see that the LCD 128X32 DOT displays
the voltage value of the thermistor and the temperature value in the current environment. Press“Ctrl+C”or click

“Stop/Restart backend”to exit the program.

7.23. Project 21Temperature Instrument 383

ESP32 Learning Kit

7.24 Project 22WiFi Station Mode

1.Introduction

ESP32 has three different WiFi operating modes : Station modeAP mode and AP+Station mode. All WiFi programming
projects must be configured with WiFi operating mode before using WiFi, otherwise WiFi cannot be used. In this
project, we will learn about ESP32’s WiFi Station mode.

2.Components

USB Cable*1 ESP22*1

3.Project wiring

Connect the ESP32 to the USB port on your computer using a USB cable.

4.Component knowledge

Station mode: When ESP32 selects Station mode, it acts as a WiFi client. It can connect to the router network and
communicate with other devices on the router via WiFi connection. As shown below, the PC is connected to the router,
and if ESP32 wants to communicate with the PC, it needs to be connected to the router.

384 Chapter 7. Python Tutorial

ESP32 Learning Kit

5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

7.24. Project 22WiFi Station Mode 385

ESP32 Learning Kit

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 22WiFi Station Mode”and double left-
click “Project_22_WiFi_Station_Mode.py”.

import time
import network # Import network module.

ssidRouter = 'ChinaNet-2.4G-0DF0' # Enter the router name
passwordRouter = 'ChinaNet@233' # Enter the router password

def STA_Setup(ssidRouter,passwordRouter):
print("Setup start")
sta_if = network.WLAN(network.STA_IF) # Set ESP32 in Station mode.
if not sta_if.isconnected():

print('connecting to',ssidRouter)
Activate ESP32’s Station mode, initiate a connection request to the router
and enter the password to connect.

sta_if.active(True)
(continues on next page)

386 Chapter 7. Python Tutorial

ESP32 Learning Kit

(continued from previous page)

sta_if.connect(ssidRouter,passwordRouter)
#Wait for ESP32 to connect to router until they connect to each other successfully. ␣

→˓

while not sta_if.isconnected():
pass

Print the IP address assigned to ESP32-WROVER in “Shell”.
print('Connected, IP address:', sta_if.ifconfig())
print("Setup End")

try:
STA_Setup(ssidRouter,passwordRouter)

except:
sta_if.disconnect()

Because the names and passwords of routers in various places are different, before the code runs, users need to enter
the correct router’s name and password in the box as shown in the illustration above.

After making sure the router name and password are entered correctly, click “Run current script”, the code starts to
be executed and wait for ESP32 to connect to your router and print the IP address assigned by the router to ESP32 in
the “Shell” window of Thonny IDE.

7.24. Project 22WiFi Station Mode 387

ESP32 Learning Kit

7.25 Project 23WiFi AP Mode

1.Introduction

ESP32 has three different WiFi operating modes : Station modeAP mode and AP+Station mode. All WiFi programming
projects must be configured with WiFi operating mode before using WiFi, otherwise WiFi cannot be used. In this
project, we will learn about ESP32’s WiFi AP mode.

2.Components

USB Cable*1 ESP22*1

3.Project wiring

Connect the ESP32 to the USB port on your computer using a USB cable.

4.Component knowledge

AP mode : When ESP32 selects AP mode, it creates a hotspot network that is separated from the Internet and waits for
other WiFi devices to connect. As shown in the figure below, ESP32 is used as a hotspot. If a mobile phone or PC wants
to communicate with ESP32, it must be connected to the hotspot of ESP32. Only after a connection is established with
ESP32 can they communicate.

388 Chapter 7. Python Tutorial

ESP32 Learning Kit

5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

7.25. Project 23WiFi AP Mode 389

ESP32 Learning Kit

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 23WiFi AP Mode”, and double left-
click “Project_23_WiFi_AP_Mode.py”.

import network #Import network module.

#Enter correct router name and password.
ssidAP = 'ESP32_WiFi' #Enter the router name
passwordAP = '12345678' #Enter the router password

local_IP = '192.168.0.147'
gateway = '192.168.0.1'
subnet = '255.255.255.0'
dns = '8.8.8.8'

#Set ESP32 in AP mode.
ap_if = network.WLAN(network.AP_IF)

(continues on next page)

390 Chapter 7. Python Tutorial

ESP32 Learning Kit

(continued from previous page)

def AP_Setup(ssidAP,passwordAP):
ap_if.ifconfig([local_IP,gateway,subnet,dns])
print("Setting soft-AP ... ")
ap_if.config(essid=ssidAP,authmode=network.AUTH_WPA_WPA2_PSK, password=passwordAP)
ap_if.active(True)
print('Success, IP address:', ap_if.ifconfig())
print("Setup End\n")

try:
AP_Setup(ssidAP,passwordAP)

except:
print("Failed, please disconnect the power and restart the operation.")
ap_if.disconnect()

6.Project result

Before the code runs, you can make any changes to the AP name and password for ESP32 in the box as shown in the
illustration above. Of course, you can leave it alone by default.

Click “Run current script”, the code starts to be executed and open the AP function of ESP32 and print the access
point information in the “Shell” window of Thonny IDE.

7.25. Project 23WiFi AP Mode 391

ESP32 Learning Kit

Turn on the WiFi scanning function of your phone, and you can see the ssid_AP on ESP32, which is called
“ESP32_Wifi” in this code. You can enter the password “12345678” to connect it or change its AP name and password
by modifying ode.

7.26 Project 24WiFi Station+AP Mode

1.Introduction

ESP32 has three different WiFi operating modes : Station modeAP mode and AP+Station mode. All WiFi programming
projects must be configured with WiFi operating mode before using WiFi, otherwise WiFi cannot be used. In this
project, we will learn ESP32’s WiFi Station+AP mode.

2.Components

USB Cable*1 ESP22*1

392 Chapter 7. Python Tutorial

ESP32 Learning Kit

3.Project wiring

Connect the ESP32 to the USB port on your computer using a USB cable.

4.Component knowledge

AP+Station mode: In addition to AP mode and Station mode, ESP32 can also use AP mode and Station mode at the
same time. This mode contains the functions of the previous two modes. Turn on ESP32’s Station mode, connect it to
the router network, and it can communicate with the Internet via the router. At the same time, turn on its AP mode to
create a hotspot network. Other WiFi devices can choose to connect to the router network or the hotspot network to
communicate with ESP32.

5.Project code

Codes used in this tutorial are saved in“2. Python Projects”. If you haven’t downloaded the code file yet, please click
on the link to download it:Download Python Codes

Open“Thonny”click“This computer”→“D:”→“2. Python Projects”→“Project 24WiFi Station+AP Mode”and double
left-click “Project_24_WiFi_Station+AP_Mode.py”.

7.26. Project 24WiFi Station+AP Mode 393

ESP32 Learning Kit

import network #Import network module.

ssidRouter = 'ChinaNet-2.4G-0DF0' #Enter the router name
passwordRouter = 'ChinaNet@233' #Enter the router password

ssidAP = 'ESP32_WiFi'#Enter the AP name
passwordAP = '12345678' #Enter the AP password

local_IP = '192.168.0.147'
gateway = '192.168.0.1'
subnet = '255.255.255.0'
dns = '8.8.8.8'

sta_if = network.WLAN(network.STA_IF)
ap_if = network.WLAN(network.AP_IF)

def STA_Setup(ssidRouter,passwordRouter):
print("Setting soft-STA ... ")
if not sta_if.isconnected():

print('connecting to',ssidRouter)
sta_if.active(True)
sta_if.connect(ssidRouter,passwordRouter)
while not sta_if.isconnected():

pass
print('Connected, IP address:', sta_if.ifconfig())
print("Setup End")

def AP_Setup(ssidAP,passwordAP):
ap_if.ifconfig([local_IP,gateway,subnet,dns])
print("Setting soft-AP ... ")
ap_if.config(essid=ssidAP,authmode=network.AUTH_WPA_WPA2_PSK, password=passwordAP)

(continues on next page)

394 Chapter 7. Python Tutorial

ESP32 Learning Kit

(continued from previous page)

ap_if.active(True)
print('Success, IP address:', ap_if.ifconfig())
print("Setup End\n")

try:
AP_Setup(ssidAP,passwordAP)
STA_Setup(ssidRouter,passwordRouter)

except:
sta_if.disconnect()
ap_if.idsconnect()

6.Project result

It is analogous to Project 35 and project 36. Before running the code, you need to modify ssidRouter, passwordRouter,
ssidAP and passwordAP shown in the box of the illustration above.

After making sure that the code is modified correctly, click “Run current script” the code starts to be executed and
the“Shell”window of Thonny IDE will display as follows:

7.26. Project 24WiFi Station+AP Mode 395

ESP32 Learning Kit

Turn on the WiFi scanning function of your phone, and you can see the ssidAP on ESP32.

s

396 Chapter 7. Python Tutorial

CHAPTER

EIGHT

GETTING STARTED WITH C LANGUAGE(RASPBERRY PI)

Raspberry Pi is a card computer whose official system is Raspberry Pi OS, which can be installed on other systems, such
as: ubuntu, Windows IoT. Raspberry Pi can be used as a personal server, a router camera monitoring and recognition,
as well as voice interaction by connecting a camera and a voice interactive assistant.

Furthermore, Raspberry Pi leads out 40Pin pins that can be connected to various sensors and control LEDs, motors,
etc, making it can be used to create a robot.

8.1 Install the Raspberry Pi OS System

8.1.1 1. Tools needed for the Raspberry Pi system

1.1. Hardware Tool

1Raspberry Pi 4B/3B/2B

2Above 16G TFT Memory Card

3Card Reader

4Computer and other parts

1.2. Software tools that need to be installed

Windows System

1Install putty

Download linkhttps://www.chiark.greenend.org.uk/~sgtatham/putty/

397

https://www.chiark.greenend.org.uk/~sgtatham/putty/

ESP32 Learning Kit

398 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

After downloading the package file , double-click it and tap“Next”.

8.1. Install the Raspberry Pi OS System 399

ESP32 Learning Kit

Click “Next”.

Select “Install Putty files”, and click “Install”

400 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

After a few seconds, the installation is complete, click “Finish”.

Remote Login software -WinSCP

Download link: https://winscp.net/eng/download.php

8.1. Install the Raspberry Pi OS System 401

https://winscp.net/eng/download.php

ESP32 Learning Kit

After downloading the WinSCP software file , double-click it then

click .

Click“Accept”then select the appropriate option and click“Next”, then click“Install”.

402 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

8.1. Install the Raspberry Pi OS System 403

ESP32 Learning Kit

404 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

After a few seconds, the installation is complete, click “Finish”.

8.1. Install the Raspberry Pi OS System 405

ESP32 Learning Kit

Format TFT card tool– SD Card Formatter

Download link

http://www.canadiancontent.net/tech/download/SD_Card_Formatter.html

406 Chapter 8. Getting started with C language(Raspberry Pi)

http://www.canadiancontent.net/tech/download/SD_Card_Formatter.html

ESP32 Learning Kit

8.1. Install the Raspberry Pi OS System 407

ESP32 Learning Kit

Unzip the SDCardFormatterv5_WinEN package and double-click the SD Card Formatter

file to run it.

Click “Next”select “ ” and click “Next”.

408 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

Click “Next” again, and then click “Install”.

8.1. Install the Raspberry Pi OS System 409

ESP32 Learning Kit

After a few seconds, the installation is complete, click “Finish”.

4Burn mirror system software tool— Win32DiskImager

Download linkhttps://sourceforge.net/projects/win32diskimager/

410 Chapter 8. Getting started with C language(Raspberry Pi)

https://sourceforge.net/projects/win32diskimager/

ESP32 Learning Kit

After downloading the software file double-click it and then click “Run”.

8.1. Install the Raspberry Pi OS System 411

ESP32 Learning Kit

After selecting and click “Next”.

412 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

Click “Browse. . . ”select the location where Win32DiskImager is installed and click “Next”.

1. Click “Browse. . . ”select the location where Win32DiskImager is installed and click“Next”.

8.1. Install the Raspberry Pi OS System 413

ESP32 Learning Kit

2. Select and click“Next”and then click“Install”.

414 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

d. After a few seconds, the installation is complete, click “Finish”.

5Scan for IP address software tool—WNetWatcher

Download Linkhttp://www.nirsoft.net/utils/wnetwatcher.zip

8.1. Install the Raspberry Pi OS System 415

ESP32 Learning Kit

1.3. Raspberry PI mirror system

Download link for the latest version

https://www.raspberrypi.org/downloads/raspberry-pi-os/

Download link for the old version

• Raspbian

• https://downloads.raspberrypi.org/raspbian/images/

• Raspbian full

• https://downloads.raspberrypi.org/raspbian_full/images/

• Raspbian lite

• https://downloads.raspberrypi.org/raspbian_lite/images/

We use the 2020.05.28 version in the tutorial and recommend you to use this version(Please download this version as
shown in the picture below.)

https://downloads.raspberrypi.org/raspios_full_armhf/images/raspios_full_armhf-2021-05-28/

416 Chapter 8. Getting started with C language(Raspberry Pi)

https://www.raspberrypi.org/downloads/raspberry-pi-os/
https://downloads.raspberrypi.org/raspios_full_armhf/images/raspios_full_armhf-2021-05-28/

ESP32 Learning Kit

8.1.2 2. Install Raspberry Pi OS system on Raspberry Pi 4B:

2.1.Connect the TFT memory card to a card reader, then plug the card reader into a computer’s USB port.

2.2.Use the SD Card Formatter to format a TFT memory card, as illustrated below

8.1. Install the Raspberry Pi OS System 417

ESP32 Learning Kit

418 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

2.3.Burn System:

Use Win32DiskImager to burn the official Raspberry Pi OS mirror to the TFT memory card.

8.1. Install the Raspberry Pi OS System 419

ESP32 Learning Kit

After the mirror system is burned, don’t pull out the card reader, use a notepad to create a file named SSH and
delete**.txt**, then copy it to the boot directory of the TFT card, so that you can open the SSH login function, as
shown in the following figure:

420 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

Pull out the card reader.

2.4.Log in system:

The following operations require raspberry to share the same LOCAL area network with the PC.

Insert the burned TFT memory card into the Raspberry Pi, connect internet cables and plug in power. If there is a screen
and a HDMI cable of Raspberry Pi, connect the screen, and you can see the Raspberry Pi OS startup screen. If there is
not a HDMI cable of Raspberry Pi, you can enter the desktop of Raspberry Pi via SSH remote login software—WinSCP
and xrdp.

Remote login

Use WinSCP to log in using the default Raspberry Pi system namedefault user namedefault password.

Note that only a raspberry pi can be connected to a network.

8.1. Install the Raspberry Pi OS System 421

ESP32 Learning Kit

422 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

View the ip address and mac address

Click to open terminal and input the password: raspberry, and tap“Enter”on keyboard.

8.1. Install the Raspberry Pi OS System 423

ESP32 Learning Kit

After successfully login, open the terminal, input ip a and tap“Enter”keyboard to view the ip address and mac address.

From the above figure, mac address of this Raspberry Pi is a6:32:17:61:9c, and ip address is 192.168.1.128(use ip
address to finish xrdp remote login).

Since mac address never changes, you could confirm ip via mac address when not sure which ip it is.

424 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

Fix the IP address of Raspberry Pi

IP address is changeable, therefore, we need to make IP address fixed for convenient use.

Follow the below steps:

Switch to root user

If without root user’s password

Set root password

Input password in the terminal: sudo passwd root to set password.

Switch to root user

su root

Fix the configuration file of IP address

Firstly change IP address of the following configuration file.

#New IP address:address 192.168.1.99

Copy the above new address to terminal and tap“Enter”keyboard.

Configuration File:

echo -e ’

auto eth0

iface eth0 inet static

#Change IP address

address 192.168.1.99

netmask 255.255.255.0

gateway 192.168.1.1

network 192.168.1.0

broadcast 192.168.1.255

dns-domain 119.29.29.29

dns-nameservers 119.29.29.29

metric 0

mtu 1492

‘>/etc/network/interfaces.d/eth0

8.1. Install the Raspberry Pi OS System 425

ESP32 Learning Kit

Reboot the system to activate the configuration file.

Input the restart command in the terminal: sudo reboot

You could log in via fixed IP afterwards.

Check IP to ensure IP address fixed well.

Log in desktop on Raspberry Pi wirelessly

If we don’t have an HDMI cable to connect to the display, can we wirelessly log in to the Raspberry Pi desktop from the
Windows desktop? Yes, there are many methods, VNC and Xrdp are commonly used to log in desktop of Raspberry
Pi wirelessly.

Let’s take an example of Xrdp.

Install Xrdp Service in the terminal

Installation commands:

426 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

Switch to root User: su root

Installation commands: apt-get install xrdp

Enter y and tap“Enter”keyboard. . .

As shown below:

Open the remote desktop connection on Windows

Press WIN+R on keyboard and enter mstsc.exe.

As shown below:

Enter the IP address of the Raspberry Pi, as shown below. Click“Connect” and then click “Connect”again. 192.168.1.99
is the ip address we use, you could change it into your IP address.

8.1. Install the Raspberry Pi OS System 427

ESP32 Learning Kit

A prompt will appear and you can click“Yes”.

Then enter the user name: pi ,and the default password: raspberry, as shown below:

428 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

Click“OK”or tap“Enter”keyboard, you will view the desktop of Raspberry Pi OS, as shown below:

Now, we finish the basic configuration of the Raspberry Pi OS system.

8.1. Install the Raspberry Pi OS System 429

ESP32 Learning Kit

8.2 Preparation of C language control basic hardware:

C language is a programming language with a considerably fast running speed. There are numerous software and
system core code written in it, such as Linux system. Notably, hardware MCU and embedded class are not exception.
Thereby, it makes sense to learn the C language to control hardware.

8.2.1 (1)Description of basic raspberry pi accessories

Raspberry Pi 4B

Below are the raspberry pi pictures and model pictures supported by this learning kit. There are 40 pins.

Raspberry Pi 4B Raspberry Pi 4B Model

Hardware Interfaces

430 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

8.2.2 Raspberry Pi +ESP32 main board + breadboard +USB cable, as shown below

(3)Copy Example Code Folder to Raspberry Pi

Place example code folder to the pi folder of Raspberry Pi. Just copy and paste the 2. Projects.zip file (the default is
ZIP file)that we provided into user pi and unzip it, as shown below:

8.2. Preparation of C language control basic hardware: 431

ESP32 Learning Kit

432 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

8.2. Preparation of C language control basic hardware: 433

ESP32 Learning Kit

Linux SystemRaspberry Pi

8.2.3 (2) Download and install Arduino IDE

1First, click on Raspberry Pi’s browser.

2. Enter the Official Arduino website in your browser: www.arduino.cc/en/software , as shown below:

434 Chapter 8. Getting started with C language(Raspberry Pi)

http://www.arduino.cc/en/software

ESP32 Learning Kit

There are various versions of IDE for Arduino. Just download a version compatible with your system (install the lasted
Arduino IDE) and click“Linux ARM 32 bits”.

8.2. Preparation of C language control basic hardware: 435

ESP32 Learning Kit

Just click JUST DOWNLOAD to download

After a few seconds, the lastest Arduino IDEArduino 1.8.19 versionzip file can be directly downloaded.

436 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

(4) Click , then find the Downloads file from the pi folder and click it. In the Downloads folder, you can
see the package“arduino-1.8.19-linuxarm.tar.xz”that you just downloaded. Then unzip the package“arduino-1.8.19-
linuxarm.tar.xz”, after a while, the package is unzipped.

8.2. Preparation of C language control basic hardware: 437

ESP32 Learning Kit

5Click file and tap itclick“Execute”in the dialog that appears to install the Arduino IDE. Once installed, an
Arduino software shortcut is generated in the desktop.

438 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

6Click and click to open the Arduino IDE.

8.2. Preparation of C language control basic hardware: 439

ESP32 Learning Kit

440 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

8.2.4 (3) Install the ESP32 on Arduino IDE

Note: You need to download Arduino IDE 1.8.5 or advanced version to install the ESP32.

1) Click and click to open the Ar-
duino IDE.

8.2. Preparation of C language control basic hardware: 441

ESP32 Learning Kit

2) Click “File”→**“Preferences”**, copy the website address https://dl.espressif.com/dl/package_esp32_index.
json in the “Additional Boards Manager URLs:” and click “OK” to save the address.

442 Chapter 8. Getting started with C language(Raspberry Pi)

https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json

ESP32 Learning Kit

8.2. Preparation of C language control basic hardware: 443

ESP32 Learning Kit

3. Click “Tools”→“Board:”, then click “Boards Manager. . .” to enter “Boards Manager” page . Enter “esp32”
as follows and select the latest version to Install. The installation package is not large, click “Install” to start the
installation.

444 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

8.2. Preparation of C language control basic hardware: 445

ESP32 Learning Kit

4. After a while, the ESP32 installation package is installed. Then click “Close”.

446 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

8.2.5 3. Arduino IDE Settings and Toolbars:

Click and click to open the Arduino IDE.

When downloading the code to the board, you must select the correct name of Arduino board that matches the board
connected to the Raspberry Pi, click“Tools”→“Board:”, as shown below ;

(Note: We use the ESP32 board in this tutorial; therefore, we select ESP32 Arduino**)**

8.2. Preparation of C language control basic hardware: 447

ESP32 Learning Kit

Then select the correct COM port (After connecting the ESP32 mainboard to the Raspberry Pi via a USB cable, you

448 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

can see the corresponding COM port).

8.2. Preparation of C language control basic hardware: 449

ESP32 Learning Kit

Before uploading the code to the ESP32 mainboard, we have to demonstrate the function of each symbol.

450 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

A- Used to verify whether there is any compiling mistakes or not.

B- Used to upload the sketch to your Arduino board.

C- Used to create shortcut window of a new sketch.

D- Used to directly open an example sketch.

E- Used to save the sketch.

F- Used to send the serial data received from board to the serial monitor.

8.3 Import the Arduino C library

8.3.1 What are Libraries ?

Librariesare a collection of code that make it easy for you to connect sensors, displays and modules, etc.

For example, the built-in LiquidCrystal library helps talk to LCD displays. There are hundreds of additional libraries
available on the Internet for download.

The built-in libraries and some of these additional libraries are listed in the reference.
(https://www.arduino.cc/en/Reference/Libraries)

8.3. Import the Arduino C library 451

ESP32 Learning Kit

8.3.2 How to Install a Library ?

Step 1: Click tap“Downloads”file and click“arduino-1.8.19”file then find and

click “libraries” file from the “arduino-1.8.19” file.

452 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

8.3. Import the Arduino C library 453

ESP32 Learning Kit

Step 2 : Copy and paste the Arduino C library ZIP file (the default is ZIP file) from the provided Arduino Libraries
folder into the libraries file opened in the first stepthe route is/home/pi/Downloads/arduino-1.8.19/libraries.

Click on the link to download the library fileArduino C Librarie

Step 3: Unzip the Arduino C package in the libraries folderfor exampleright-click“LCD_128X32.zip”file
select and tap “Extract Here”to unzip the “LCD_128X32.zip”file. Similarly, unzip the remaining library files in the
same way.). So you can see all the decompressed Arduino C library files.

454 Chapter 8. Getting started with C language(Raspberry Pi)

ESP32 Learning Kit

8.3. Import the Arduino C library 455

ESP32 Learning Kit

456 Chapter 8. Getting started with C language(Raspberry Pi)

CHAPTER

NINE

C LANGUAGE (RASPBERRY PI) TUTORIAL

Development Environment Configuration

RaspberryPi——Arduino Development Environment ConfigurationRaspberryPi——Arduino

9.1 Project 01: Hello World

1. Introduction

For ESP32 beginners, we’ll start with some simple things. In this project, you just need an ESP32 mainboard, USB
cable and Raspberry Pi to complete“Hello World!”Project. It is not only a communication test for ESP32 mainboard
and Raspberry Pi, but also a primary project for ESP32.

2. Components

ESP32*1 USB Cable*1

3. Wiring Diagram

In this project, we will use a USB cable to connect the ESP32 to Raspberry Pi.

//***
/*

* Filename : Hello World
* Description : Enter the letter R,and the serial port displays"Hello World".
* Auther :http//www.keyestudio.com
*/
char val;// defines variable "val"
void setup()
{
Serial.begin(115200);// sets baudrate to 115200
}
void loop()

(continues on next page)

457

ESP32 Learning Kit

(continued from previous page)

{
if (Serial.available() > 0) {

val=Serial.read();// reads symbols assigns to "val"
if(val=='R')// checks input for the letter "R"
{ // if so,
Serial.println("Hello World!");// shows “Hello World !”.

}
}

}
//

→˓***

Before uploading the project code to ESP32click “Tools”→“Board” and select“ESP32 Wrover Module”.

Select the serial port.

458 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Click to download the code to ESP32.

9.1. Project 01: Hello World 459

ESP32 Learning Kit

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

The Project code is uploaded successfully

460 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

5. Project result

After the project code is uploaded successfully, power up with a USB cable and click the icon to enter the serial
monitor.

Set baud rate to 115200 and type “R” in the text box. Click “Send”, and the serial monitor will display “Hello World!”.

(Note: If you enter“R” in the text box and click“Send”, the serial monitor does not print“Hello World!”, you need to
press the RESET button on the ESP32 main board and repeat the above operation.)

9.1. Project 01: Hello World 461

ESP32 Learning Kit

9.2 Project 02: Turn On LED

1.Introduction

In this project, we will show you how to light up the LED. We use the ESP32’s digital pin to turn on the LED so that
the LED is lit up.

2.Components

ESP32*1 Breadboard*1

Red LED*1 220 Resistor*1

Jumper Wire*2 USB Cable*1

3.Component knowledge

1LED:

462 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

The LED is a semiconductor known as “light-emitting diode” ,which is an electronic device made from semiconducting
materials(silicon, selenium, germanium, etc.). It has an anode and a cathode, the short lead is cathode, which connects
to GND; the long lead is anode, which connects to 3.3V or 5V.

2Five-color ring resistor

A resistor is an electronic component in a circuit that restricts or regulates the flow current flow. On the left is the
appearance of the resistor and on the right is the symbol for the resistance in the circuit . Its unit is(). 1 m= 1000 k1k=
1000.

We can use resistors to protect sensitive components, such as LED. The strength of the resistance is marked on the
body of the resistor with an electronic color code. Each color code represents a number, and you can refer to it in a
resistance card.

-Color 1 – 1st Digit.

-Color 2 – 2nd Digit.

-Color 3 – 3rd Digit.

-Color 4 – Multiplier.

-Color 5 – Tolerance.

9.2. Project 02: Turn On LED 463

ESP32 Learning Kit

In this kit, we provide three Five-color ring resistor with different resistance values. Take three Five-color ring resistor
as an example.

220 Resistor*10

10K Resistor*10

464 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

1K Resistor*10

In the same voltage, there will be less current and more resistance. The connection between current(I), voltage(V), and
resistance® can be expressed by the formula: I=U/R. In the figure below, if the voltage is 3V, the current through R1
is: I = U / R = 3 V / 10 K= 0.0003A= 0.3mA.

Don’t connect a low resistance directly to the two poles of the power supply. as this will cause excessive current to

9.2. Project 02: Turn On LED 465

ESP32 Learning Kit

damage the electronic components. Resistors do not have positive and negative poles.

3Bread board

Breadboards are used to build and test circuits quickly before completing any circuit design. There are many holes in the
breadboard that can be inserted into circuit components such as integrated circuits and resistors. A typical breadboard
is shown below

The breadboard has strips of metal , which run underneath the board and connect the holes on the top of the board. The
metal strips are laid out as shown below. Note that the top and bottom rows of holes are connected horizontallywhile
the remaining holes are connected vertically.

The first two rows (top) and the last two rows (bottom) of the breadboard are used for the positive pole (+) and negative
pole (-) of the power supply respectively. The conductive layout of the breadboard is shown in the figure below:

466 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

When we connect DIP (Dual In-line Packages) components, such as integrated circuits, microcontrollers, chips and so
on, we can see that a groove in the middle isolates the middle part, so the top and bottom of the groove is not connected.
DIP components can be connected as shown in the following diagram:

9.2. Project 02: Turn On LED 467

ESP32 Learning Kit

4Power Supply

In this project, we connected the ESP32 to the Raspberry Pi by using USB cable.

4.Wiring diagram

First, disconnect all power from the ESP32. Then build the circuit according to the wiring diagram. After the circuit
is built and verified correct, connect the ESP32 to the Raspberry Pi by using a USB cable.

Note: Avoid any possible short circuits (especially connecting 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause perma-
nent damage to your hardware!

468 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Note:

How to connect a LED

How to identify the 220 Five-color ring resistor

9.2. Project 02: Turn On LED 469

ESP32 Learning Kit

5.Project code

//**
/*
* Filename : Turn On LED
* Description : Make an led on.
* Auther : http//www.keyestudio.com
*/
#define LED_BUILTIN 15

// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin LED_BUILTIN as an output.
pinMode(LED_BUILTIN, OUTPUT);

}
void loop() {
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

}
//***

Before uploading the project code to ESP32click “Tools”→“Board” and select“ESP32 Wrover Module”.

470 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Select the serial port.

Click to download the code to ESP32.

9.2. Project 02: Turn On LED 471

ESP32 Learning Kit

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

The Project code is uploaded successfully

472 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

6.Project result

After the project code was uploaded successfully, power up with a USB cable and the LED is lit up.

9.2. Project 02: Turn On LED 473

ESP32 Learning Kit

9.3 Project 03LED Flashing

1.Introduction

In this project, we will show you the LED flashing effect .We use the ESP32’s digital pin to turn on the LED and make
it flashing.

2.Components

ESP32*1 Breadboard*1

Red LED*1 220 Resistor*1

Jumper Wire*2 USB Cable*1

3.Wiring diagram

First, disconnect all power from the ESP32. Then build the circuit according to the wiring diagram. After the circuit
is built and verified correct, connect the ESP32 to your computer using a USB cable.

Note: Avoid any possible short circuits (especially connecting 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause perma-
nent damage to your hardware!

474 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Note:

How to connect a LED

How to identify the 220 Five-color ring resistor

9.3. Project 03LED Flashing 475

ESP32 Learning Kit

4.Test Code

//**
/*
* Filename : External LED flashing
* Description : Make an led blinking.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED 15 //define the led pin

// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin LED as an output.
pinMode(PIN_LED, OUTPUT);

}

// the loop function runs over and over again forever
void loop() {
digitalWrite(PIN_LED, HIGH); // turn the LED on (HIGH is the voltage level)
delay(500); // wait for 0.5s
digitalWrite(PIN_LED, LOW); // turn the LED off by making the voltage LOW
delay(500); // wait for 0.5s

(continues on next page)

476 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

(continued from previous page)

}
//***

Before uploading Project Code to ESP32, please check the configuration of Arduino IDE.

Click “Tools” to confirm the board type and port as shown below:

Click to download the project code to ESP32.

9.3. Project 03LED Flashing 477

ESP32 Learning Kit

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

The Project code is uploaded successfully

478 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

5.Project result

After the project code was uploaded successfully, power up with a USB cable and the LED start flashing.

9.3. Project 03LED Flashing 479

ESP32 Learning Kit

9.4 Project 04: Breathing Led

1.Introduction

In previous studies, we know that LEDs have on/off state, so how to enter the intermediate state? How to output an
intermediate state to make the LED half bright? That’s what we’re going to learn.

Breathing light, that is, LED is turned from off to on gradually, and gradually from on to off, just like “breathing”. So,
how to control the brightness of a LED? We will use ESP32’s PWM to achieve this target.

2.Components

ESP32*1 Breadboard*1

Red LED*1 220 Resistor*1

Jumper Wire*2 USB Cable*1

2.Component knowledge

480 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Analog & Digital

An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discrete time signal
is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A familiar example of
an Analog Signal would be how the temperature throughout the day is continuously changing and could not suddenly
change instantaneously from 0℃ to 10℃. However, Digital Signals can instantaneously change in value. This change
is expressed in numbers as 1 and 0 (the basis of binary code). Their differences can more easily be seen when compared
when graphed as below.

In practical application, we often use binary as the digital signal, that is a series of 0’s and 1’s. Since a binary signal
only has two values (0 or 1), it has great stability and reliability. Lastly, both analog and digital signals can be converted
into the other.

PWM

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits. Common
processors cannot directly output analog signals. PWM technology makes it very convenient to achieve this conversion
(translation of digital to analog signals).

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high levels and

9.4. Project 04: Breathing Led 481

ESP32 Learning Kit

low levels, which alternately last for a while. The total time for each set of high levels and low levels is generally fixed,
which is called the period (Note: the reciprocal of the period is frequency). The time of high level outputs are generally
called “pulse width”, and the duty cycle is the percentage of the ratio of pulse duration, or pulse width (PW) to the total
period(T) of the waveform.

The longer the output of high levels last, the longer the duty cycle and the higher the corresponding voltage in the
analog signal will be. The following figures show how the analog signal voltages vary between 0V-3V3 (high level is
3V3) corresponding to the pulse width 0%-100%:

The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this relationship, we
can use PWM to control the brightness of an LED or the speed of DC motor and so on. It is evident from the above
that PWM is not real analog, and the effective value of the voltage is equivalent to the corresponding analog. so, we
can control the output power of the LED and other output modules to achieve different effects.

ESP32 and PWM:

On ESP32, the LEDC(PWM) controller has 16 separate channels, each of which can independently control frequency,
duty cycle, and even accuracy. Unlike traditional PWM pins, the PWM output pins of ESP32 are configurable, with
one or more PWM output pins per channel. The relationship between the maximum

frequency and bit precision is shown in the following formula, where the maximum value of bit is 31.

482 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

For example, generate a PWM with an 8-bit precision (28=256. Values range from 0 to 255) with a maximum frequency
of 80,000,000/255 =312,500Hz.

3.Wiring diagram

Note:

How to connect a LED

How to identify the 220 Five-color ring resistor

9.4. Project 04: Breathing Led 483

ESP32 Learning Kit

4.Project code

The design of this project makes the GP15 output PWM, and the pulse width gradually increases from 0% to 100%,
and then gradually decreases from 100% to 0%.

//**
/*
* Filename : Breathing Led
* Description : Make led light fade in and out, just like breathing.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED 15 //define the led pin
#define CHN 0 //define the pwm channel
#define FRQ 1000 //define the pwm frequency
#define PWM_BIT 8 //define the pwm precision
void setup() {
ledcSetup(CHN, FRQ, PWM_BIT); //setup pwm channel
ledcAttachPin(PIN_LED, CHN); //attach the led pin to pwm channel

}

void loop() {
for (int i = 0; i < 255; i++) { //make light fade in

ledcWrite(CHN, i);
delay(10);

}
for (int i = 255; i > -1; i--) { //make light fade out
ledcWrite(CHN, i);
delay(10);

}
}
//***

Before uploading Project Code to ESP32, please check the configuration of Arduino IDE.

Click “Tools” to confirm the board type and port as shown below:

484 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Click to download the project code to ESP32.

9.4. Project 04: Breathing Led 485

ESP32 Learning Kit

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

The Project code is uploaded successfully

486 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

5.Project result

After the project code was uploaded successfully, power up with a USB cable and the LED is turned from ON to OFF
and then back from OFF to ON gradually like breathing.

9.4. Project 04: Breathing Led 487

ESP32 Learning Kit

9.5 Project 05Traffic Lights

1.Introduction

Traffic lights are closely related to people’s daily lives, which generally show red, yellow, and green. Everyone should
obey the traffic rules, which can avoid many traffic accidents. In this project, we will use ESP32 and some LEDs (red,
green and yellow) to simulate the traffic lights.

2.Components

ESP32*1 Bread board*1

Red LED*1 Yellow LED*1 Green LED*1

USB Cable*1 220 Resistor*3 Jumper Wires

3.Wiring diagram

Note:

How to connect a LED

488 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

How to identify the 220 Five-color ring resistor

4.Test Code

//**
/*
* Filename : Traffic Lights
* Description : Simulated traffic lights.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED_RED 0 //define the red led pin
#define PIN_LED_YELLOW 2 //define the yellow led pin
#define PIN_LED_GREEN 15 //define the green led pin

void setup() {
pinMode(PIN_LED_RED, OUTPUT);
pinMode(PIN_LED_YELLOW, OUTPUT);
pinMode(PIN_LED_GREEN, OUTPUT);

}

void loop() {
digitalWrite(PIN_LED_GREEN, HIGH);// turns on the green led
delay(5000);// delays 5 seconds
digitalWrite(PIN_LED_GREEN, LOW); // turns off the green led

(continues on next page)

9.5. Project 05Traffic Lights 489

ESP32 Learning Kit

(continued from previous page)

for(int i=0;i<3;i++)// flashes 3 times.
{

delay(500);// delays 0.5 second
digitalWrite(PIN_LED_YELLOW, HIGH);// turns on the yellow led
delay(500);// delays 0.5 second
digitalWrite(PIN_LED_YELLOW, LOW);// turns off the yellow led

}
delay(500);// delays 0.5 second
digitalWrite(PIN_LED_RED, HIGH);// turns on the red led
delay(5000);// delays 5 second
digitalWrite(PIN_LED_RED, LOW);// turns off the red led

}
//***

Before uploading Project Code to ESP32, please check the configuration of Arduino IDE.

Click “Tools” to confirm the board type and port as shown below:

Click to download the project code to ESP32.

490 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Note: If uploading the code fails, you can press the Boot button on ESP32 after click , and release the Boot

button after the percentage of
uploading progress appears, as shown below:

The Project code is uploaded successfully

9.5. Project 05Traffic Lights 491

ESP32 Learning Kit

5.Project result

After the project code was uploaded successfully, power up with a USB cable and you’ll see are below:

First, the green light will be on for five seconds and then off;

Next, the yellow light blinks three times and then goes off;

Then, the red light goes on for five seconds and then goes off;

Repeat steps 1 to 3 above.

492 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

9.6 Project 06: RGB LED

1.Introduction

RGB is composed of three colors (red, green and blue),which can emit different colors of light by mixing these three
basic colors.

In this project, we will introduce the RGB and show you how to use ESP32 to control the RGB to emit different color
light .RGB is pretty basic, but it’s also a great way to learn the fundamentals of electronics and coding.

2.Components

9.6. Project 06: RGB LED 493

ESP32 Learning Kit

ESP32*1 Breadboard*1

RGB*1 220 Resistor*1

jump wires USB cable *1

3.Component knowledge

Most monitors adopt the RGB color standard, and all colors on a computer screen are a mixture of red, green and blue
in varying proportions.

This RGB LED has 4 pins, each color (red, green, blue) and a common cathode,To change its brightness, we can use
the PWM of the ESP32 pins, which can give different duty cycle signals to the RGB to produce different colors of light.

If we use three 10-bit PWM to control the RGB, in theory, we can create 2 10*210*210=1,073,741,824(1 billion) colors
through different combinations.

4.Wiring diagram

494 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Notice: The longest pin (common cathode) of the RGB LED is connected to GND.

How to identify the 220 Five-color ring resistor

9.6. Project 06: RGB LED 495

ESP32 Learning Kit

5.Project code

//**
/*
* Filename : RGB LED
* Description : Use RGBLED to show random color.
* Auther : http//www.keyestudio.com
*/
int ledPins[] = {0, 2, 15}; //define red, green, blue led pins
const byte chns[] = {0, 1, 2}; //define the pwm channels
int red, green, blue;
void setup() {
for (int i = 0; i < 3; i++) { //setup the pwm channels,1KHz,8bit
ledcSetup(chns[i], 1000, 8);
ledcAttachPin(ledPins[i], chns[i]);

}
}

void loop() {
red = random(0, 256);
green = random(0, 256);
blue = random(0, 256);
setColor(red, green, blue);
delay(200);

}

void setColor(byte r, byte g, byte b) {
ledcWrite(chns[0], 255 - r); //Common anode LED, low level to turn on the led.
ledcWrite(chns[1], 255 - g);
ledcWrite(chns[2], 255 - b);

}
//***

6.Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the RGB LED starts to display random colors.

496 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

9.7 Project 07: Flowing Water Light

1.Introduction

In our daily life, we can see many billboards composed of different colors of LED. They constantly change the light
(like water) to attract customers’ attention. In this project, we will use ESP32 to control 10 leds to achieve the effect of
flowing water.

2.Components

ESP32*1 Breadboard*1

Red LED*1 220 Resistor*1

Jumper Wires USB Cable*1

3.Wiring diagram:

Note:

9.7. Project 07: Flowing Water Light 497

ESP32 Learning Kit

How to connect a LED

How to identify the 220 Five-color ring resistor

4. Test Code

This project is designed to make a flowing water lamp. Which are these actions: First turn LED #1 ON, then turn it
OFF. Then turn LED #2 ON, and then turn it OFF. . . and repeat the same to all 10 LEDs until the last LED is turns
OFF. This process is repeated to achieve the “movements” of flowing water.

//**
/*
* Filename : Flowing Water Light
* Description : Using ten leds to demonstrate flowing lamp.
* Auther : http//www.keyestudio.com
*/
byte ledPins[] = {22, 21, 19, 18, 17, 16, 4, 0, 2, 15};
int ledCounts;

void setup() {
ledCounts = sizeof(ledPins);
for (int i = 0; i < ledCounts; i++) {
pinMode(ledPins[i], OUTPUT);

}
}

(continues on next page)

498 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

(continued from previous page)

void loop() {
for (int i = 0; i < ledCounts; i++) {
digitalWrite(ledPins[i], HIGH);
delay(100);
digitalWrite(ledPins[i], LOW);

}
for (int i = ledCounts - 1; i > -1; i--) {
digitalWrite(ledPins[i], HIGH);
delay(100);
digitalWrite(ledPins[i], LOW);

}
}
//**

4.Project result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that 10 LEDs will light up from left to right and then back from right to left.

9.8 Project 081-Digit Digital Tube

1.Introduction

The 1-Digit 7-Segment display is an device that displays decimal numbers, which is widely used in digital clocks,
electronic meters, basic calculators and other electronic devices that display digital information. In this project, we
will use ESP32 to control 1-Digit 7-segment display to display numbers.

2.Components

9.8. Project 081-Digit Digital Tube 499

ESP32 Learning Kit

ESP32*1 Breadboard*1

1-Digit 7-Segment Display*1 220 Resistor*8

Jumper Wires USB Cable*1

3.Component Knowledge

500 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

1-Digit 7-Segment Display: It is a semiconductor light emitting device, and its basic unit is a light-emitting diode
(LED). The digital tube display can be divided into 7-segment display and 8-segment display according to the number
of segments.

The 8-segment display has one more LED unit than the 7-segment display(used for decimal point display). Each
segment of the 7-segment display is a separate LED. According to the connection mode of the LED unit, the digital
tube can be divided into a common anode digital tube and a common cathode digital tube.

In the common cathode 7-segment display, all the cathodes (or negative pole) of the segmented LEDs are connected
together, so you should connect the common cathode to GND. If you are about to light up a segmented LED, you can
set its associated pin to“HIGH”.

In the common anode 7-segment display, the LED anodes (positive pole) of all segments are connected together, so you
should connect the common anode to“+5V”. If you are about to light up a segmented LED, you can set its associated
pin to“LOW”.

Each part of the digital tube is composed of an LED. So when you use it, you also need to use a current limiting
resistor. Otherwise, the LED will be damaged. In this experiment, we will use an ordinary common cathode one-digit
digital tube. As we mentioned above, you should connect the common cathode to GND. If you are about to light up a
segmented LED, you can set its associated pin to“HIGH”.

4.Wiring Diagram

Note: The direction of the 7-segment display inserted into the breadboard is consistent with the wiring diagram, with
one more point in the lower right corner.

9.8. Project 081-Digit Digital Tube 501

ESP32 Learning Kit

5.Test Code

The digital display is divided into 7 segments, and the decimal point display is divided into 1 segment. When certain
numbers are displayed, the corresponding segment will be lit. For example, when the number 1 is displayed, segments
b and c will be turned on.

//**
/*
* Filename : 1-Digit Digital Tube
* Description : One Digit Tube displays numbers from 9 to 0.
* Auther : http//www.keyestudio.com
*/
// sets the IO PIN for every segment

(continues on next page)

502 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

(continued from previous page)

int a=16; // digital PIN 16 for segment a
int b=4; // digital PIN 4 for segment b
int c=5; // digital PIN 5 for segment c
int d=18; // digital PIN 18 for segment d
int e=19; // digital PIN 19 for segment e
int f=22; // digital PIN 22 for segment f
int g=23; // digital PIN 23 for segment g
int dp=17; // digital PIN 17 for segment dp
void digital_0(void) // displays number 0
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,LOW);
digitalWrite(dp,LOW);
}
void digital_1(void) // displays number 1
{
digitalWrite(a,LOW);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,LOW);
digitalWrite(e,LOW);
digitalWrite(f,LOW);
digitalWrite(g,LOW);
digitalWrite(dp,LOW);
}
void digital_2(void) // displays number 2
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,LOW);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,LOW);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_3(void) // displays number 3
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(f,LOW);
digitalWrite(e,LOW);
digitalWrite(dp,LOW);
digitalWrite(g,HIGH);
}

(continues on next page)

9.8. Project 081-Digit Digital Tube 503

ESP32 Learning Kit

(continued from previous page)

void digital_4(void) // displays number 4
{
digitalWrite(a,LOW);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,LOW);
digitalWrite(e,LOW);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_5(void) // displays number 5
{
digitalWrite(a,HIGH);
digitalWrite(b,LOW);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,LOW);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_6(void) // displays number 6
{
digitalWrite(a,HIGH);
digitalWrite(b,LOW);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_7(void) // displays number 7
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,LOW);
digitalWrite(e,LOW);
digitalWrite(f,LOW);
digitalWrite(g,LOW);
digitalWrite(dp,LOW);
}
void digital_8(void) // displays number 8
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,HIGH);
digitalWrite(f,HIGH);

(continues on next page)

504 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

(continued from previous page)

digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void digital_9(void) // displays number 9
{
digitalWrite(a,HIGH);
digitalWrite(b,HIGH);
digitalWrite(c,HIGH);
digitalWrite(d,HIGH);
digitalWrite(e,LOW);
digitalWrite(f,HIGH);
digitalWrite(g,HIGH);
digitalWrite(dp,LOW);
}
void setup()
{
// initialize digital pin LED as an output.
pinMode(a, OUTPUT);
pinMode(b, OUTPUT);
pinMode(c, OUTPUT);
pinMode(d, OUTPUT);
pinMode(e, OUTPUT);
pinMode(f, OUTPUT);
pinMode(g, OUTPUT);
pinMode(dp, OUTPUT);

}
void loop()
{
while(1)
{
digital_9();// displays number 9
delay(1000); // waits a sencond
digital_8();// displays number 8
delay(1000); // waits a sencond
digital_7();// displays number 7
delay(1000); // waits a sencond
digital_6();// displays number 6
delay(1000); // waits a sencond
digital_5();// displays number 5
delay(1000); // waits a sencond
digital_4();// displays number 4
delay(1000); // waits a sencond
digital_3();// displays number 3
delay(1000); // waits a sencond
digital_2();// displays number 2
delay(1000); // waits a sencond
digital_1();// displays number 1
delay(1000);// waits a sencond
digital_0();// displays number 0
delay(1000);// waits a sencond
}}
//**

9.8. Project 081-Digit Digital Tube 505

ESP32 Learning Kit

6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the 1-Digit 7-Segment display will display numbers from 9 to 0.

9.9 Project 094-Digit Digital Tube

1.Introduction

The 4-digit 7-segment display is a very practical display device and it is used for devices such as electronic clocks,
score counters and the number of people in the park. Because of the low price, easy to use, more and more projects
will use the 4 Digit 7-segment display. In this project, we use ESP32 to control the 4-digit 7-segment display to display
digits.

2.Components

ESP32*1 Breadboard*1

4-digit 7-segment display Module*1 220 Resistor*8

Jumper Wires USB Cable*1

3.Component Knowledge

4-digit 7-segment displayIt is a device with common cathode and anode, its display principle is similar to the 1-
Digit digital tube display. Both of them have eight GPIO ports to control the digital tube display, that is 8 leds. However,
here is 4-digit, so it needs four GPIO ports to control the bit selection end. Our 4 - digit digital tube is common cathode.

The following figure shows the pin diagram of the 4-digit digital tube. G1, G2, G3 and G4 are the control pins.

506 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Schematic Diagram

4.Wiring Diagram

9.9. Project 094-Digit Digital Tube 507

ESP32 Learning Kit

5.Test Code

//**
/*
* Filename : 4-Digit Digital Tube
* Description : Four Digit Tube displays numbers from 0 to 9999.
* Auther : http//www.keyestudio.com
*/
#define d_a 18 //Define nixie tube a to pin 18
#define d_b 13
#define d_c 2
#define d_d 16
#define d_e 17
#define d_f 19
#define d_g 0
#define d_dp 4

#define G1 21 //Define the first set of nixtube G1 to pin 21
#define G2 22
#define G3 14
#define G4 15

//Nixie tube 0-F code value
unsigned char num[17][8] =
{
//a b c d e f g dp
{1, 1, 1, 1, 1, 1, 0, 0}, //0
{0, 1, 1, 0, 0, 0, 0, 0}, //1

(continues on next page)

508 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

(continued from previous page)

{1, 1, 0, 1, 1, 0, 1, 0}, //2
{1, 1, 1, 1, 0, 0, 1, 0}, //3
{0, 1, 1, 0, 0, 1, 1, 0}, //4
{1, 0, 1, 1, 0, 1, 1, 0}, //5
{1, 0, 1, 1, 1, 1, 1, 0}, //6
{1, 1, 1, 0, 0, 0, 0, 0}, //7
{1, 1, 1, 1, 1, 1, 1, 0}, //8
{1, 1, 1, 1, 0, 1, 1, 0}, //9
{1, 1, 1, 0, 1, 1, 1, 1}, //A
{1, 1, 1, 1, 1, 1, 1, 1}, //B
{1, 0, 0, 1, 1, 1, 0, 1}, //C
{1, 1, 1, 1, 1, 1, 0, 1}, //D
{1, 0, 0, 1, 1, 1, 1, 1}, //E
{1, 0, 0, 0, 1, 1, 1, 1}, //F
{0, 0, 0, 0, 0, 0, 0, 1}, //.

};

void setup()
{
pinMode(d_a,OUTPUT); //Set to output pin
pinMode(d_b,OUTPUT);
pinMode(d_c,OUTPUT);
pinMode(d_d,OUTPUT);
pinMode(d_e,OUTPUT);
pinMode(d_f,OUTPUT);
pinMode(d_g,OUTPUT);
pinMode(d_dp,OUTPUT);

pinMode(G1,OUTPUT);
pinMode(G2,OUTPUT);
pinMode(G3,OUTPUT);
pinMode(G4,OUTPUT);

}

void loop()
{

//Start counting from 0 and gradually increase by 1 to 9999, repeating.
for(int l = 0;l < 10;l++)
{
for(int k = 0; k < 10;k++)
{
for(int j = 0; j < 10; j++)
{
for(int i = 0;i < 10;i++)
{
//125 flashes a second equals one second.
//1000/8=125
for(int q = 0;q<125;q++)
{
Display(1,l);//The first nixie tube shows the value of L.
delay(2);

(continues on next page)

9.9. Project 094-Digit Digital Tube 509

ESP32 Learning Kit

(continued from previous page)

Display(2,k);
delay(2);
Display(3,j);
delay(2);
Display(4,i);
delay(2);

}

}
}

}
}

}
//Display functions: g ranges from 1 to 4,num ranges from 0 to 9
void Display(unsigned char g,unsigned char n)
{
digitalWrite(d_a,LOW); //Remove the light
digitalWrite(d_b,LOW);
digitalWrite(d_c,LOW);
digitalWrite(d_d,LOW);
digitalWrite(d_e,LOW);
digitalWrite(d_f,LOW);
digitalWrite(d_g,LOW);
digitalWrite(d_dp,LOW);

switch(g) //Gate a choice
{
case 1:
digitalWrite(G1,LOW); //Choose the first digit
digitalWrite(G2,HIGH);
digitalWrite(G3,HIGH);
digitalWrite(G4,HIGH);
break;

case 2:
digitalWrite(G1,HIGH);
digitalWrite(G2,LOW); //Choose the second bit
digitalWrite(G3,HIGH);
digitalWrite(G4,HIGH);
break;

case 3:
digitalWrite(G1,HIGH);
digitalWrite(G2,HIGH);
digitalWrite(G3,LOW); //Choose the third bit
digitalWrite(G4,HIGH);
break;

case 4:
digitalWrite(G1,HIGH);
digitalWrite(G2,HIGH);
digitalWrite(G3,HIGH);
digitalWrite(G4,LOW); //Choose the fourth bit
break;

default:break;
(continues on next page)

510 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

(continued from previous page)

}

digitalWrite(d_a,num[n][0]); //a Queries the code value table
digitalWrite(d_b,num[n][1]);
digitalWrite(d_c,num[n][2]);
digitalWrite(d_d,num[n][3]);
digitalWrite(d_e,num[n][4]);
digitalWrite(d_f,num[n][5]);
digitalWrite(d_g,num[n][6]);
digitalWrite(d_dp,num[n][7]);

}
//**

6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the 4-digit 7-segment display displays 0-9999and repeat these actions in an infinite loop.

9.10 Project 108×8 Dot-matrix Display

1.Introduction

Dot matrix display is an electronic digital display device that can display information on machine, clocks, public trans-
port departure indicators and many other devices. In this project, we will use ESP32 to control 8x8 LED dot matrix to
display digits.

2.Components

ESP32*1 Breadboard*1

8*8 dot matrix module *1 220 Resistor*8

Jumper Wires USB Cable*1

9.10. Project 108×8 Dot-matrix Display 511

ESP32 Learning Kit

3.Component Knowledge

8*8 dot matrix moduleThe 8*8 dot matrix is composed of 64 LEDs, including row common anode and row
common cathode. Our module is row common anode, each row has a line connecting the positive pole of the LED, and
the column is connecting the negative pole of the LED lamp, as shown in the following figure :

4.Wiring Diagram

512 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

5.Test Code

//**
/*
* Filename : 8×8 Dot-matrix Display
* Description : 8×8 Dot-matrix displays numbers from 0 to 9.
* Auther : http//www.keyestudio.com
*/
int R[] = {14,26,4,27,19,16,18,17};
int C[] = {32,21,22,12,0,13,33,25};

unsigned char data_0[8][8] =
{
{0,0,1,1,1,0,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,0,1,1,1,0,0,0}
};

(continues on next page)

9.10. Project 108×8 Dot-matrix Display 513

ESP32 Learning Kit

(continued from previous page)

unsigned char data_1[8][8] =
{
{0,0,0,0,1,0,0,0},
{0,0,0,1,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,1,1,1,0,0}
};

unsigned char data_2[8][8] =
{
{0,0,1,1,1,0,0,0},
{0,1,0,0,0,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,1,0,0,0,0},
{0,0,1,0,0,0,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0}
};

unsigned char data_3[8][8] =
{
{0,0,1,1,1,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,1,1,1,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0}
};

unsigned char data_4[8][8] =
{
{0,1,0,0,0,0,0,0},
{0,1,0,0,1,0,0,0},
{0,1,0,0,1,0,0,0},
{0,1,1,1,1,1,1,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,0,0,0,0,0}
};

unsigned char data_5[8][8] =
{
{0,1,0,0,0,0,0,0},

(continues on next page)

514 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

(continued from previous page)

{0,1,1,1,1,1,0,0},
{0,1,0,0,0,0,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,0,0,0,1,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0}
};

unsigned char data_6[8][8] =
{
{0,1,1,1,1,1,0,0},
{0,1,0,0,0,0,0,0},
{0,1,0,0,0,0,0,0},
{0,1,1,1,1,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0}
};

unsigned char data_7[8][8] =
{
{0,0,0,0,0,0,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,1,0,0},
{0,0,0,0,1,0,0,0},
{0,0,0,1,0,0,0,0},
{0,0,1,0,0,0,0,0},
{0,1,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0}
};

unsigned char data_8[8][8] =
{
{0,1,1,1,1,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,1,1,1,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0}
};

unsigned char data_9[8][8] =
{
{0,1,1,1,1,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,0,0,0,1,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,1,0,0},

(continues on next page)

9.10. Project 108×8 Dot-matrix Display 515

ESP32 Learning Kit

(continued from previous page)

{0,0,0,0,0,1,0,0},
{0,1,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0}
};

void Display(unsigned char dat[8][8])
{
for(int c = 0; c<8;c++)
{
digitalWrite(C[c],LOW);
for(int r = 0;r<8;r++)
{
digitalWrite(R[r],dat[r][c]);
}
delay(1);
Clear();
}
}

void Clear()
{
for(int i = 0;i<8;i++)
{
digitalWrite(R[i],LOW);
digitalWrite(C[i],HIGH);
}
}

void setup(){
for(int i = 0;i<8;i++)
{
pinMode(R[i],OUTPUT);
pinMode(C[i],OUTPUT);

}

}

void loop(){
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_0);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_1);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_2);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_3);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_4);

(continues on next page)

516 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

(continued from previous page)

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_5);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_6);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_7);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_8);

}
for (int i = 1; i <= 100; i = i + (1)) {
Display(data_9);

}
}
//**

6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the 8*8 dot matrix displays the numbers 0~9 respectively.

9.11 Project 1174HC595N Control 8 LEDs

1.Introduction

In previous projects, we learned how to light up an LED. With only 32 IO ports on ESP32, how do we light up a lot of
leds? Sometimes it is possible to run out of pins on the ESP32, and you need to extend it with the shift register. You can
use the 74HC595N chip to control 8 outputs at a time, taking up only a few pins on your microcontroller. In addition,
you can also connect multiple registers together to further expand the output.

In this project, we will use a ESP32a 74HC595 chip and LEDs to make a flowing water light to understand the function
of the 74HC595 chip.

2.Components

ESP32*1 Breadboard*1 74HC595N chip*1 Jumper Wires

220 Resistor*8 Red LED*8 USB Cable*1

9.11. Project 1174HC595N Control 8 LEDs 517

ESP32 Learning Kit

3.Component Knowledge

74HC595N Chip: To put it simply, 74HC595N chip is a combination of 8-digit shifting register, memorizer and
equipped with tri-state output. The shift register and the memorizer are synchronized to different clocks, and the data
is input on the rising edge of the shift register clock SCK and goes into the memory register on the rising edge of the
memory register clock RCK.

If the two clocks are connected together, the shift register is always one pulse earlier than the storage register. The
shift register has a serial shift input (SI) and a serial output (SQH) for cascading. The 8-bit shift register can be reset
asynchronously (low-level reset), and the storage register has an 8-bit Three-state parallel bus output, when the output
enable (OE) is enabled (active low), the storage register is output to the 74HC595N pin (bus).

Pins

4.Wiring Diagram

Note: Pay attention to the direction in which the 74HC595N chip is inserted.

518 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

5.Test Code

//**
/*
* Filename : 74HC595N Control 8 LEDs
* Description : Use 74HC575N to drive ten leds to display the flowing light.
* Auther : http//www.keyestudio.com
*/
int dataPin = 14; // Pin connected to DS of 74HC595(Pin14)
int latchPin = 12; // Pin connected to ST_CP of 74HC595(Pin12)
int clockPin = 13; // Pin connected to SH_CP of 74HC595(Pin11)

void setup() {
// set pins to output
pinMode(latchPin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, OUTPUT);

}
void loop() {

// Define a one-byte variable to use the 8 bits to represent the state of 8 LEDs of␣
→˓LED bar graph.

(continues on next page)

9.11. Project 1174HC595N Control 8 LEDs 519

ESP32 Learning Kit

(continued from previous page)

// This variable is assigned to 0x01, that is binary 00000001, which indicates only␣
→˓one LED light on.
byte x = 0x01; // 0b 0000 0001
for (int j = 0; j < 8; j++) { // Let led light up from right to left

writeTo595(LSBFIRST, x);
x <<= 1; // make the variable move one bit to left once, then the bright LED move␣

→˓one step to the left once.
delay(50);

}
delay(100);
x = 0x80; //0b 1000 0000
for (int j = 0; j < 8; j++) { // Let led light up from left to right

writeTo595(LSBFIRST, x);
x >>= 1;
delay(50);

}
delay(100);

}
void writeTo595(int order, byte _data) {
// Output low level to latchPin
digitalWrite(latchPin, LOW);
// Send serial data to 74HC595
shiftOut(dataPin, clockPin, order, _data);
// Output high level to latchPin, and 74HC595 will update the data to the parallel␣

→˓output port.
digitalWrite(latchPin, HIGH);

}
//**

6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the 8 LEDs start flashing in flowing water mode.

9.12 Project 12Active Buzzer

1.Introduction

Active buzzer is a sound component that is widely used as a sound component for computers, printers, alarms, elec-
tronic toys and phones, timers etc. It has an internal vibration source, just by connecting to a 5V power supply, it can
continuously buzz. In this project, we will use ESP32 to control the active buzzer to beep.

2.Components

520 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

ESP32*1 Breadboard*1 Active buzzer*1

NPN Transistor(S8050)*1 1k Resistor*1 Jumper Wires USB Cable*1

3.Component Knowledge

The active buzzer inside has a simple oscillator circuit , which can convert constant direct current into a certain fre-
quency pulse signal. Once active buzzer receives a high level, it will sound. The passive buzzer is an integrated
electronic buzzer with no internal vibration source. It must be driven by 2K to 5K square wave instead of a DC signal.

The appearance of the two buzzers is very similar, but passive buzzers come with a green circuit board, and active
buzzers come with a black tape. Passive buzzers don’t have positive pole, but active buzzers have. As shown below:

9.12. Project 12Active Buzzer 521

ESP32 Learning Kit

Transistor:

Since the buzzer requires such large current that GPIO of ESP32 output capability cannot meet the requirement, a
transistor of NPN type is needed here to amplify the current.

Transistor, the full name: semiconductor transistor, is a semiconductor device that controls current. Transistor can be
used to amplify weak signal, or work as a switch. It has three electrodes(PINs): base (b), collector © and emitter (e).

When there is current passing between “be”, “ce” , which will allow several-fold current (transistor magnification)
pass, at this point, transistor works in the amplifying area. When current between “be” exceeds a certain value, “ce” ,
which will not allow current to increase any longer, at this point, transistor works in the saturation area. Transistor has
two types as shown below: PNP and NPN,

PNP transistor NPN transistor

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

522 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Based on the transistor’s characteristics, it is often used as a switch in digital circuits. As micro-controller’s capacity
to output current is very weak, we will use a transistor to amplify current and drive large-current components.

When using the NPN transistor to drive a buzzer, we often adopt the following method. If GPIO outputs high level,
current will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs low level,
no current flows through R1, the transistor will not be conducted, and buzzer will not sound.

When using the PNP transistor to drive a buzzer, we often adopt the following method. If GPIO outputs low level,
current will flow through R1, the transistor will get conducted, and the buzzer will sound. If GPIO outputs high level,
no current flows through R1, the transistor will not be conducted, and buzzer will not sound.

4.Wiring Diagram

Note: The buzzer power supply in this circuit is 5V. On a 3.3V power supply, the buzzer can work, but it will reduce
the loudness.

5.Test Code

//**
/*
* Filename : Active Buzzer
* Description : Active buzzer beeps.

(continues on next page)

9.12. Project 12Active Buzzer 523

ESP32 Learning Kit

(continued from previous page)

* Auther : http//www.keyestudio.com
*/
#define buzzerPin 15 //define buzzer pins

void setup ()
{
pinMode (buzzerPin, OUTPUT);

}
void loop ()
{
digitalWrite (buzzerPin, HIGH);
delay (500);
digitalWrite (buzzerPin, LOW);
delay (500);

}
//**

6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the active buzzer beeps.

9.13 Project 13Passive Buzzer

1.Introduction

In a previous project, we studied an active buzzer, which can only make a sound and may make you feel very
monotonous. In this project, we will learn a passive buzzer and use the ESP32 control it to work. Unlike the active
buzzer, the passive buzzer can emit sounds of different frequencies.

2. Components

ESP32*1 Breadboard*1 Passive Buzzer *1

NPN Transistor(S8050)*1 1kResistor*1 Jumper Wires USB Cable*1

3.Component Knowledge

524 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Passive buzzer: A passive buzzer is an integrated electronic buzzer with no internal vibration source and it has to be
driven by 2K-5K square waves, not DC signals. The two buzzers are very similar in appearance, but one buzzer with a
green circuit board is a passive buzzer and the other buzzer with black tape is an active buzzer. Passive buzzers cannot
distinguish between positive polarity while active buzzers can.

Transistor: Please refer to project 12.

4.Wiring Diagram

9.13. Project 13Passive Buzzer 525

ESP32 Learning Kit

5.Test Code

//**
/*
* Filename : Passive Buzzer
* Description : Passive Buzzer sounds the alarm.
* Auther : http//www.keyestudio.com
*/
#define LEDC_CHANNEL_0 0

// LEDC timer uses 13 bit accuracy

#define LEDC_TIMER_13_BIT 13

// Define tool I/O ports

#define BUZZER_PIN 15

//Create a musical melody list, Super Mario

int melody[] = {330, 330, 330, 262, 330, 392, 196, 262, 196, 165, 220, 247, 233, 220,␣
→˓196, 330, 392, 440, 349, 392, 330, 262, 294, 247, 262, 196, 165, 220, 247, 233, 220,␣
→˓196, 330, 392,440, 349, 392, 330, 262, 294, 247, 392, 370, 330, 311, 330, 208, 220,␣
→˓262, 220, 262,

294, 392, 370, 330, 311, 330, 523, 523, 523, 392, 370, 330, 311, 330, 208, 220, 262,220,␣
→˓262, 294, 311, 294, 262, 262, 262, 262, 262, 294, 330, 262, 220, 196, 262, 262,262,␣
→˓262, 294, 330, 262, 262, 262, 262, 294, 330, 262, 220, 196};

//Create a list of tone durations

int noteDurations[] = {8,4,4,8,4,2,2,3,3,3,4,4,8,4,8,8,8,4,8,4,3,8,8,3,3,3,3,4,4,8,4,8,8,
→˓8,4,8,4,3,8,8,2,8,8,8,4,4,8,8,4,8,8,3,8,8,8,4,4,4,8,2,8,8,8,4,4,8,8,4,8,8,3,3,3,1,8,4,
→˓4,8,4,8,4,8,2,8,4,4,8,4,1,8,4,4,8,4,8,4,8,2};
void setup() {
pinMode(BUZZER_PIN, OUTPUT); // Set the buzzer to output mode

(continues on next page)

526 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

(continued from previous page)

}

void loop() {

int noteDuration; //Create a variable of noteDuration

for (int i = 0; i < sizeof(noteDurations); ++i)

{
noteDuration = 800/noteDurations[i];

ledcSetup(LEDC_CHANNEL_0, melody[i]*2, LEDC_TIMER_13_BIT);

ledcAttachPin(BUZZER_PIN, LEDC_CHANNEL_0);

ledcWrite(LEDC_CHANNEL_0, 50);

delay(noteDuration * 1.30); //delay
}

}
//**

6.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the passive buzzer plays music.

9.14 Project 14: Mini Table Lamp

1. Introduction

Do you know that the ESP32 can light up an LED when you press a button? In this project, we will use a ESP32, a
button switch and a LED to make a mini table lamp.

2. Components

ESP32*1 Breadboard*1 Button*1 10K Resistor*1

Red LED*1 22 Resistor*1 USB Cable*1 Jumper Wires Button Cap*1

3. Component Knowledge

9.14. Project 14: Mini Table Lamp 527

ESP32 Learning Kit

Button: A button can control the circuit on and off, the button is plugged into a circuit, the circuit is disconnected when
the button is not pressed. The circuit works when you press the button, but breaks again when you release it. Why does
it only work when you press it? It starts from the internal structure of the button, which don’t allow current to travel
from one end of the button to the other before it is pressed. When pressed, a metal strip inside the button connects the
two sides to allow electricity to pass through.

The internal structure of the button is shown in the figure . Before the button is pressed, 1 and 2 are
on, 3 and 4 are also on, but 1, 3 or 1, 4 or 2, 3 or 2, 4 are off(not working). Only when the button is pressed, 1, 3 or 1,
4 or 2, 3 or 2, 4 are on.

The button switch is one of the most commonly used components in circuit design.

Schematic diagram of the button:

What is button shake?

We think of the switch circuit as “press the button and turn it on immediately”, press it again and turn it off immediately”.
In fact, this is not the case.

The button usually uses a mechanical elastic switch, and the mechanical elastic switch will produce a series of
[shake](javascript:;) due to the elastic action at the moment when the mechanical contact is opened and closed (usually
about 10ms). As a result, the button switch will not immediately and stably turn on the circuit when it is closed, and it
will not be completely and instantaneously disconnected when it is turned off.

528 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

How to eliminate the shake?

There are two common methods, namely fix shake in the software and hardware. We only discuss the shake removal
in the software.

We already know that the shake time generated by elasticity is about 10ms, and the delay command can be used to
delay the execution time of the command to achieve the effect of shake removal.

Therefore, we delay 0.02s in the code to achieve the key anti-shake function.

4. Wiring Diagram

9.14. Project 14: Mini Table Lamp 529

ESP32 Learning Kit

Note:

How to connect the LED

How to identify the 220 5-band resistor and 10K 5-band resistor

530 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

5. Test code

//**
/*

* Filename : Mini Table Lamp
* Description : Make a table lamp.
* Auther : http//www.keyestudio.com
*/
#define PIN_LED 4
#define PIN_BUTTON 15
bool ledState = false;

void setup() {
// initialize digital pin PIN_LED as an output.
pinMode(PIN_LED, OUTPUT);
pinMode(PIN_BUTTON, INPUT);

}

// the loop function runs over and over again forever
void loop() {
if (digitalRead(PIN_BUTTON) == LOW) {
delay(20);
if (digitalRead(PIN_BUTTON) == LOW) {
reverseGPIO(PIN_LED);

}
while (digitalRead(PIN_BUTTON) == LOW);

}
}

void reverseGPIO(int pin) {
ledState = !ledState;
digitalWrite(pin, ledState);

}
//**

6. Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you

9.14. Project 14: Mini Table Lamp 531

ESP32 Learning Kit

will see that press the push button switch, the LED turns on; When it is released, the LED is still on. Press it again,
and the LED turns off. When it is released, the LED stays off. Doesn’t it look like a mini table lamp?

9.15 Project 15Tilt And LED

1. Introduction

The ancients without electronic clock, so the hourglass are invented to measure time. The hourglass has a large capacity
on both sides, and which is filled with fine sand on one side. What’s more, there is a small channel in the middle, which
can make the hourglass stand upright, the side with fine sand is on the top. due to the effect of gravity,the fine sand will
flow down through the channel to the other side of the hourglass.

When the sand reaches the bottom, turn it upside down and record the number of times it has gone through the hourglass,
therefore, the next day we can know the approximate time of the day by it.

In this project, we will use ESP32 to control the tilt switch and LED lights to simulate an hourglass to make an electronic
hourglass.

2. Components

ESP32*1 Tilt Switch*1 Red LED*4 10K Resistor*1

Breadboard*1 220 Resistor*4 USB Cable*1 Jumper Wires

3. Component Knowledge

532 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Tilt switch is also called digital switch. Inside is a metal ball that can roll. The principle of rolling the metal ball to
contact with the conductive plate at the bottom, which is used to control the on and off of the circuit. When it is a rolling
ball tilt sensing switch with single directional trigger, the tilt sensor is tilted toward the trigger end (two gold-plated pin
ends), the tilt switch is in a closed circuit and the voltage at the analog port is about 5V(binary number is 1023).

In this way, the LED will light up. When the tilting switch is in horizontal position or tilting to the other end, the tilting
switch is in open state the voltage of the analog port is about 0V (binary number is 0), the LED will turn off. In the
program, we judge the state of the switch based on whether the voltage value of the analog port is greater than 2.5V
(binary number is 512).

The internal structure of the tilt switch is used here to illustrate how it works, as shown below:

9.15. Project 15Tilt And LED 533

ESP32 Learning Kit

4. Wiring Diagram

Note:

How to connect the LED

How to identify the 220 5-band resistor and 10K 5-band resistor

534 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

5. Test Code

//**
/*
* Filename : Tilt And LED
* Description : Tilt switches and four leds to simulate an hourglass.
* Auther : http//www.keyestudio.com
*/
#define SWITCH_PIN 15 // the tilt switch is connected to Pin15
byte switch_state = 0;
void setup()
{
for(int i=16;i<20;i++)
{

pinMode(i, OUTPUT);
}
pinMode(SWITCH_PIN, INPUT);
for(int i=16;i<20;i++)
{
digitalWrite(i,0);
}
Serial.begin(9600);

}
(continues on next page)

9.15. Project 15Tilt And LED 535

ESP32 Learning Kit

(continued from previous page)

void loop()
{
switch_state = digitalRead(SWITCH_PIN);
Serial.println(switch_state);
if (switch_state == 0)
{
for(int i=16;i<20;i++)
{

digitalWrite(i,1);
delay(500);
}
}

if (switch_state == 1)
{
for(int i=19;i>15;i--)
{
digitalWrite(i,0);
delay(500);
}
}

}
//**

6. Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that when you tilt the breadboard to an angle, the LEDs will light up one by one. When you turn the breadboard
to the original angle, the LEDs will turn off one by one. Like the hourglass, the sand will leak out over time.

9.16 Project 16: I2C 128×32 LCD

1. Introduction

In everyday life, we can do a host of experiments with the display module and also DIY a broad menu of small objects.
For example, you can make a temperature meter with a temperature sensor and a display, or make a distance meter with
an ultrasonic module and a display.

In this project, we will use the LCD_128X32_DOT module as the display and connect it to the ESP32, which will be
used to control the LCD_128X32_DOT display to show various English words, common symbols and numbers.

2. Components

536 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

ESP32*1 Breadboard*1

LCD_128X32_DOT*1 M-F Dupont Wires USB Cable*1

3. Component Knowledge

LCD_128X32_DOT: It is an LCD module with 128*32 pixels and its driver chip is ST7567A. The module uses the
IIC communication mode, while the code contains a library of all alphabets and common symbols that can be called
directly.

When using, we can also set it in the code so that the English letters and symbols show different text sizes. To make it
easy to set up the pattern display, we also provide a mold capture software that converts a specific pattern into control
code and then copies it directly into the test code for use.

Schematic diagram of LCD_128X32_DOT

9.16. Project 16: I2C 128×32 LCD 537

ESP32 Learning Kit

Features:

Pixel: 128*32 character

Operating voltage(chip)4.5V to 5.5V

Operating current100mA (5.0V)

Optimal operating voltage(module):5.0V

4. Wiring Diagram

538 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

5. Adding the lcd128_32_io library

This code uses a library named “lcd128_32_io”, if you haven’t installed it yet, please do so before learning. The steps
to add third-party libraries are as follows:

Click on the link to download the library file:Arduino C “lcd128_32_io.h” Librarie

6. Test Code

//**
/*

* Filename : LCD 128*32
* Description : LCD 128*32 display string
* Auther : http//www.keyestudio.com
*/
#include "lcd128_32_io.h"

//Create lCD128 *32 pinsda--->21 scl--->22
lcd lcd(21, 22);

void setup() {
lcd.Init(); //initialize

(continues on next page)

9.16. Project 16: I2C 128×32 LCD 539

ESP32 Learning Kit

(continued from previous page)

lcd.Clear(); //clear
}

void loop() {
lcd.Cursor(0, 4); //Set display position
lcd.Display("KEYESTUDIO"); //Setting the display
lcd.Cursor(1, 0);
lcd.Display("ABCDEFGHIJKLMNOPQR");
lcd.Cursor(2, 0);
lcd.Display("123456789+-*/<>=$@");
lcd.Cursor(3, 0);
lcd.Display("%^&(){}:;'|?,.~\\[]");

}
//**

6. Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you will
see that the 128X32LCD module display will show“KEYESTUDIO”at the first line“ABCDEFGHIJKLMNOPQR”will
be displayed at the second line“123456789±*/<>=$@”will be shown at the third line and“%^&(){}:;’|?,.~\[]”will be
displayed at the fourth line.

9.17 Project 17Small Fan

1. Introduction

In hot summer, we need electric fans to cool us down, so in this project, we will use a ESP32 to control a DC motor
and small fan blades to make a small electric fan.

2. Components

540 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

ESP32*1 DC Motor*1 Breadboard*1 Fan*1 NPN Transistor
(S8050)*1

PNP Transistor
(S8550)*1

1K Resistor*1 Jumper Wire Diode*1 USB Cable*1

6 AA Battery
Holder*1

Keyestudio Breadboard
Power Module*1

AA Battery(Self-
prepared)*6

3. Component Knowledge:

Keyestudio Breadboard Power Supply Module

Introduction:

This breadboard power supply module is compatible with 5V and 3.3V, which can be applied to MB102 breadboard.
The module contains two channels of independent control, powered by the USB all the way.

The output voltage is constant for the DC5V, and another way is powered by DC6.5-12V, output controlled by the slide
switch, respectively for DC 5V and DC 3.3V.

If the other power supply is DC 6.5-12v, when the slide switch is switched to +5V, the output voltages of the left and
right lines of the module are DC 5V. When the slide switch is switched to +3V, the output voltage of the USB power
supply terminal of the module is DC 5V , and the output voltage of the DC 6.5-12V power supply terminal of the other
power supply is DC 3.3V.

Specification:

• Applied to MB102 breadboard;

• Input voltageDC 6.5-12V or powered by USB;

• Output voltage3.3V or 5V

• Max output current:<700ma

• Up and down two channels of independent control, one of which can be switched to 3.3V or 5V;

Comes with two sets of DC output pins, easy for external use.

9.17. Project 17Small Fan 541

ESP32 Learning Kit

4. Wiring Diagram 1

We use the S8050NPN transistor) to control the motor

Wire up first, then connect a fan at the DC motor

5. Test Code 1

//**
/*

* Filename : Small_Fan
* Description : S8050 triode drives the motor working
* Auther : http//www.keyestudio.com
*/

void setup() {

pinMode(15, OUTPUT); // Initialize pin 15 as output.
}

void loop() {
digitalWrite(15, HIGH); // Turn on the motor (HIGH means HIGH level)
delay(4000); // Delay 4 seconds

(continues on next page)

542 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

(continued from previous page)

digitalWrite(15, LOW); // Reduce the voltage and turn off the motor
delay(2000); // Delay 2 seconds

}
//**

6. Test Result 1

Upload the code to the ESP32 and power up. You will view the motor rotate for 4s, stop for 2s, in a loop way

7. Wiring Diagram 2

We use the S8050PNP transistor) to control the motor

Wire up first, then connect a fan at the DC motor

8. Test Code 2

//**
/*

* Filename : Small_Fan
* Description : S8550 triode drives the motor working
* Auther : http//www.keyestudio.com
*/

(continues on next page)

9.17. Project 17Small Fan 543

ESP32 Learning Kit

(continued from previous page)

void setup() {

pinMode(15, OUTPUT); // Initialize pin 15 as output.
}

void loop() {
digitalWrite(15, LOW); // Turn on the motor (LOW means LOW level)
delay(4000); // Delay 4 seconds
digitalWrite(15, HIGH); // Raise the voltage and turn off the motor
delay(2000); // Delay 2 seconds

}
//**

9. Test Result 2

Upload the code to the ESP32 and power up. You will view the motor rotate for 4s, stop for 2s, in a loop way

9.18 Project 18: Dimming Light

1. Introduction

A potentiometer is a three-terminal resistor with sliding or rotating contacts that forms an adjustable voltage divider.
It works by changing the position of the sliding contacts across a uniform resistance. In the potentiometer, the entire
input voltage is applied across the whole length of the resistor, and the output voltage is the voltage drop between the
fixed and sliding contact.

In this project, we will learn how to use ESP32 to read the values of the potentiometer, and make a dimming lamp with
LED.

2. Components

ESP32*1 Breadboard*1 Potentiometer*1 Red LED*1

220Resistor*1 Jumper Wires USB Cable*1

3. Component Knowledge

544 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Adjustable potentiometer: It is a kind of resistor and an analog electronic component, which has two states of 0 and
1(high level and low level). The analog quantity is different, its data state presents a linear state such as 1 ~ 1024

ADC : An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or binary
form consisting of 1s and 0s. The range of our ADC on ESP32 is 12 bits, that means the resolution is 2^12=4096, and
it represents a range (at 3.3V) will be divided equally to 4096 parts. The rage of analog values corresponds to ADC
values. So the more bits the ADC has, the denser the partition of analog will be and the greater the precision of the
resulting conversion.

Subsection 1: the analog in rang of 0V—3.3/4095 V corresponds to digital 0.

Subsection 2: the analog in rang of 3.3/4095 V—2*3.3 /4095V corresponds to digital 1;

The following analog will be divided accordingly.

The conversion formula is as follows:

DACThe reversing of this process requires a DAC, Digital-to-Analog Converter. The digital I/O port can output
high level and low level (0 or 1), but cannot output an intermediate voltage value.

This is where a DAC is useful. ESP32 has two DAC output pins with 8-bit accuracy, GPIO25 and GPIO26, which can
divide VCC (here is 3.3V) into 2^8=256 parts. For example, when the digital quantity is 1, the output voltage value
is 3.3/256 *1 V, and when the digital quantity is 128, the output voltage value is 3.3/256 *128=1.65V, the higher the
accuracy of DAC, the higher the accuracy of output voltage value will be.

The conversion formula is as follows:

9.18. Project 18: Dimming Light 545

ESP32 Learning Kit

ADC on ESP32

ESP32 has 16 pins can be used to measure analog signals. GPIO pin sequence number and analog pin definition are
shown in the following table

ADC number in ESP32 ESP32 GPIO number
ADC0 GPIO 36
ADC3 GPIO 39
ADC4 GPIO 32
ADC5 GPIO33
ADC6 GPIO34
ADC7 GPIO 35
ADC10 GPIO 4
ADC11 GPIO0
ADC12 GPIO2
ADC13 GPIO15
ADC14 GPIO13
ADC15 GPIO 12
ADC16 GPIO 14
ADC17 GPIO27
ADC18 GPIO25
ADC19 GPIO26

DAC on ESP32

ESP32 has two 8-bit digital analog converters to be connected to GPIO25 and GPIO26 pins, respectively, and it is
immutable. As shown in the following table

Simulate pin number GPIO number
DAC1 GPIO25
DAC2 GPIO26

The DAC pin number is already defined in ESP32’s code base; for example, you can replace GPIO25 with DAC1 in
the code.

4. Read the values of the potentiometer

We connect the potentiometer to the analog IO port of ESP32 to read the ADC value, DAC value and voltage value of
the potentiometer, please refer to the wiring diagram below

546 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

//**
/*
* Filename : Read Potentiometer Analog Value
* Description : Basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the Potentiometer

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value, and then the map()␣
→˓function is used to convert the value into an 8-bit precision DAC value. The input and␣
→˓output voltage are calculated according to the previous formula, and the information␣
→˓is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

}
//**

9.18. Project 18: Dimming Light 547

ESP32 Learning Kit

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200 and press the reset button first.

You will see that the serial monitor window will print out the ADC value, DAC value and voltage value of the poten-
tiometer. When turning the potentiometer handle, the ADC value, DAC value and voltage value will change. As shown
below:

5. Wiring diagram of the dimming lamp

In the previous step, we read the ADC value, DAC value and voltage value of the potentiometer. Now we need to convert
the ADC value of the potentiometer into the brightness of the LED to make a lamp that can adjust the brightness.The
wiring diagram is as follow:

548 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

6. Test Code

//**
/*

* Filename : Dimming Light
* Description : Controlling the brightness of LED by potentiometer.
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the potentiometer
#define PIN_LED 15 // the pin of the LED
#define CHAN 0
void setup() {

ledcSetup(CHAN, 1000, 12);
ledcAttachPin(PIN_LED, CHAN);

}

void loop() {
int adcVal = analogRead(PIN_ANALOG_IN); //read adc
int pwmVal = adcVal; // adcVal re-map to pwmVal
ledcWrite(CHAN, pwmVal); // set the pulse width.
delay(10);

}
//**

6. Test Result

9.18. Project 18: Dimming Light 549

ESP32 Learning Kit

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that turn the potentiometer handle and the brightness of the LED will change accordingly.

9.19 Project 19Flame Alarm

1. Introduction

Fire is a terrible disaster and fire alarm systems are very useful in housescommercial buildings and factories. In this
project, we will use ESP32 to control a flame sensor, a buzzer and a LED to simulate fire alarm devices. This is a
meaningful maker activity.

2. Component

550 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

ESP32*1 Breadboard*1 Red LED*1 Active Buzzer*1

Flame Sensor*1 220 Resistor*1 10KResistor*1 Jumper Wires

NPN Transistor(S8050)*1 1k Resistor*1 USB Cable*1

3. Component Knowledge

The flame emits a certain amount IR light that is invisible to the human eye, but our flame sensor can detect it and
alert a microcontroller(such as ESP32) that a fire has been detected. It has a specially designed infrared receiver tube
to detect the flame and then convert the flame brightness into a fluctuating level signal.

The short pin of the receiving triode is negative pole and the other long pin is positive pole. We should connect the
short pin (negative) to 5V and the long pin (positive) to the analog pin, a resistor and GND. As shown in the figure
below

9.19. Project 19Flame Alarm 551

ESP32 Learning Kit

Note: Since vulnerable to radio frequency radiation and temperature changes, the flame sensor should be kept away
from heat sources like radiators, heaters and air conditioners, as well as direct irradiation of sunlight, headlights and
incandescent light.

4 .Read the values of the flame sensor

We first use a simple code to read the ADC value, DAC value and voltage value of the flame sensor and print them out.
Please refer to the wiring diagram below

552 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

//**
/*
* Filename : Read Analog Value Of Flame Sensor
* Description : Basic usage of ADCDAC and Voltage
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the Flame sensor

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value, and then the map()␣
→˓function is used to convert the value into an 8-bit precision DAC value. The input and␣
→˓output voltage are calculated according to the previous formula, and the information␣
→˓is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

(continues on next page)

9.19. Project 19Flame Alarm 553

ESP32 Learning Kit

(continued from previous page)

→˓voltage);
delay(200);

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200 and press the reset button first.

You will see that the serial monitor window will print out the ADC value, DAC value and voltage value of the flame
sensor. When the sensor is closed to fire, the ADC value,DAC value and voltage value will get greater. Conversely, the
ADC value,DAC value and voltage value decrease.

5. Wiring diagram of the flame alarm

Next, we will use a flame sensor, a buzzer, and a LED to make an interesting project, that is flame alarm. When flame
is detected, the LED flashes and the buzzer alarms.

554 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

6. Test Code

Note: the threshold of 500 in the code can be reset as required)

//**
/*

* Filename : Flame Alarm
* Description : Controlling the buzzer and LED by flame sensor.
* Auther : http//www.keyestudio.com
*/
#define PIN_ADC0 36 //the pin of the flame sensor
#define PIN_LED 15 // the pin of the LED
#define PIN_BUZZER 4 // the pin of the buzzer

void setup() {
pinMode(PIN_LED, OUTPUT);
pinMode(PIN_BUZZER, OUTPUT);
pinMode(PIN_ADC0, INPUT);

}

void loop() {
int adcVal = analogRead(PIN_ADC0); //read the ADC value of flame sensor
if (adcVal >= 500) {
digitalWrite (PIN_BUZZER, HIGH); //turn on buzzer
digitalWrite(PIN_LED, HIGH); // turn on LED
delay(500); // wait a second.
digitalWrite (PIN_BUZZER, LOW);
digitalWrite(PIN_LED, LOW); // turn off LED
delay(500); // wait a second

(continues on next page)

9.19. Project 19Flame Alarm 555

ESP32 Learning Kit

(continued from previous page)

}
else
{

digitalWrite(PIN_LED, LOW); //turn off LED
digitalWrite (PIN_BUZZER, LOW); //turn off buzzer

}
}
//**

7. Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that when the flame sensor detects the flame, the LED will flash and the buzzer will alarm, otherwise, the LED
does not light up and the buzzer does not sound.

9.20 Project 20: Night Lamp

1. Introduction

Sensors or components are ubiquitous in our daily life. For example, some public street lamps will automatically turn
on at night and turn off during the day. In fact, this make use of a photosensitive element that senses the intensity of
external ambient light. When the outdoor brightness decreases at night, the street lights will turn on automatically. In
the daytime, the street lights will automatically turn off.

In this project, we use a ESP32 to control a LED to achieve the effect of the street light.

2. Components

ESP32*1 Breadboard*1 Red LED*1 10KResistor*1

Photoresistor*1 220Resistor*1 Jumper Wires USB Cable*1

3. Component Knowledge

docs/media/9e553e75b6f976f33438171eb2f2e775-1699344906400-78.png

Photoresistor : It is a kind of photosensitive resistor, its principle is that the photoresistor surface receives brightness
(light) to reduce the resistance, the resistance value will change with the detected intensity of the ambient light . With
this characteristic, we can use the photoresistor to detect the light intensity. Photoresistor and its electronic symbol are
as follows

556 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

The following circuit is used to detect changes in resistance values of photoresistors

In the circuit above, when the resistance of the photoresistor changes due to the change of light intensity, the voltage
between the photoresistor and resistor R2 will also change. Thus, the intensity of light can be obtained by measuring
this voltage.

4. Read the values of the photoresistor

We first use a simple code to read the ADC value, DAC value and voltage value of the photoresistor and print them out.
Please refer to the following wiring diagram

9.20. Project 20: Night Lamp 557

ESP32 Learning Kit

//**
/*
* Filename : Read Photosensitive Analog Value
* Description : Basic usage of ADC
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 //the pin of the photosensitive sensor

void setup() {
Serial.begin(115200);

}

//In loop()the analogRead() function is used to obtain the ADC value, and then the map()␣
→˓function is used to convert the value into an 8-bit precision DAC value. The input and␣
→˓output voltage are calculated according to the previous formula, and the information␣
→˓is finally printed out.
void loop() {
int adcVal = analogRead(PIN_ANALOG_IN);
int dacVal = map(adcVal, 0, 4095, 0, 255);
double voltage = adcVal / 4095.0 * 3.3;
Serial.printf("ADC Val: %d, \t DAC Val: %d, \t Voltage: %.2fV\n", adcVal, dacVal,␣

→˓voltage);
delay(200);

(continues on next page)

558 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

(continued from previous page)

}
//**

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable, open the
serial monitor and set the baud rate to 115200 and press the reset button first.

You will see that the serial monitor window will print out the ADC valueDAC value and voltage value of the photore-
sistor. When the light intensity around the photoresistor is gradually reduced, the ADC value, DAC value and voltage
value will gradually increase. On the contrary, the ADC value, DAC value and voltage value decrease gradually.

5. Wiring diagram of the light-controlled lamp

Now we will make a light controlled lamp. The principle is the same as the small dimming lamp , that is, the ESP32
takes the analog values of the sensor, and then adjusts the brightness of the LED.

9.20. Project 20: Night Lamp 559

ESP32 Learning Kit

6. Test Code

//**
/*

* Filename : Night Lamp
* Description : Controlling the brightness of LED by photosensitive sensor.
* Auther : http//www.keyestudio.com
*/
#define PIN_ANALOG_IN 36 // the pin of the photosensitive sensor
#define PIN_LED 15 // the pin of the LED
#define CHAN 0
#define LIGHT_MIN 372
#define LIGHT_MAX 2048
void setup() {

ledcSetup(CHAN, 1000, 12);
ledcAttachPin(PIN_LED, CHAN);

}

void loop() {
int adcVal = analogRead(PIN_ANALOG_IN); //read adc
int pwmVal = map(constrain(adcVal, LIGHT_MIN, LIGHT_MAX), LIGHT_MIN, LIGHT_MAX, 0,␣

→˓4095); // adcVal re-map to pwmVal
ledcWrite(CHAN, pwmVal); // set the pulse width.
delay(10);

}
//**

560 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

7. Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that when the intensity of light around the photoresistor is reduced, the LED will be bright, on the contrary,
the LED will be dim.

9.21 Project 21Temperature Instrument

1.Introduction

Thermistor is a kind of resistor whose resistance depends on temperature changes, which is widely used in gardening,
home alarm systems and other devices. Therefore, we can use the features to make a temperature instrument.

2.Components

ESP32*1 Breadboard*1 Thermistor*1 10KResistor*1

M-F Dupont Wires LCD 128X32 DOT*1 Jumper Wires USB Cable*1

3.Component Knowledge

Thermistor: It is a temperature sensitive resistor. When it senses a change in temperature, the resistance of the
thermistor will change. We can take advantage of this characteristic to detect temperature intensity. The thermistor and
its electronic symbol are shown below:

The relationship between resistance and temperature of the thermistor is

9.21. Project 21Temperature Instrument 561

ESP32 Learning Kit

Rt is the thermistor resistance under T2 temperature;

R is the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of e;

B is temperature index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15 + Celsius temperature.

Parameters : B=3950, R=10k, T1=25.

The circuit connection method of the thermistor is similar to the photoresistor, as shown below

We can use the value measured by the ADC converter to obtain the resistance of thermistor, and then we can use the
formula to obtain the temperature value.

Therefore, the temperature formula can be derived as:

562 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

4.Read the value of the thermistor

First we will learn the thermistor reading the current ADC value, voltage value and temperature value and print them
out. Please connect the wirings according to the wiring diagram below

//**
/*
* Filename : Thermomter
* Description : Making a thermometer by thermistor.
* Auther : http//www.keyestudio.com
*/

(continues on next page)

9.21. Project 21Temperature Instrument 563

ESP32 Learning Kit

(continued from previous page)

#define PIN_ANALOG_IN 36
void setup() {
Serial.begin(115200);

}

void loop() {
int adcValue = analogRead(PIN_ANALOG_IN); //read ADC pin
double voltage = (float)adcValue / 4095.0 * 3.3; // calculate voltage
double Rt = 10 * voltage / (3.3 - voltage); //calculate resistance␣

→˓value of thermistor
double tempK = 1 / (1 / (273.15 + 25) + log(Rt / 10) / 3950.0); //calculate␣

→˓temperature (Kelvin)
double tempC = tempK - 273.15; //calculate␣

→˓temperature (Celsius)
Serial.printf("ADC value : %d,\tVoltage : %.2fV, \tTemperature : %.2fC\n", adcValue,␣

→˓voltage, tempC);
delay(1000);

}
//**

Upload the code to the ESP32, power up with a USB cable, open serial monitor and set baud rate to 115200. Press the
rest button of the ESP32 board,then you will view ADC value, voltage value and temperature value of the thermistor
displayed.

Pinch the thermistor a while, the temperature value will increase.

5.Wiring diagram of the temperature instrument

564 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

6.Adding the lcd128_32_io library

Please add the lcd128_32_io library first

7.Test Code

//**
/*
* Filename : Temperature Instrument
* Description : LCD displays the temperature of thermistor.
* Auther : http//www.keyestudio.com
*/
#include "lcd128_32_io.h"

#define PIN_ANALOG_IN 36
(continues on next page)

9.21. Project 21Temperature Instrument 565

ESP32 Learning Kit

(continued from previous page)

lcd lcd(21, 22); //Create lCD128 *32 pinsda->21 scl->22

void setup() {
lcd.Init(); //initialize
lcd.Clear(); //clear

}
char string[10];

void loop() {
int adcValue = analogRead(PIN_ANALOG_IN); //read ADC pin
double voltage = (float)adcValue / 4095.0 * 3.3; // calculate voltage
double Rt = 10 * voltage / (3.3 - voltage); //calculate resistance␣

→˓value of thermistor
double tempK = 1 / (1 / (273.15 + 25) + log(Rt / 10) / 3950.0); //calculate␣

→˓temperature (Kelvin)
double tempC = tempK - 273.15; //calculate␣

→˓temperature (Celsius)
lcd.Cursor(0,0); //Set display position
lcd.Display("Voltage:"); //Setting the display
lcd.Cursor(0,8);
lcd.DisplayNum(voltage);
lcd.Cursor(0,11);
lcd.Display("V");
lcd.Cursor(2,0);
lcd.Display("tempC:");
lcd.Cursor(2,8);
lcd.DisplayNum(tempC);
lcd.Cursor(2,11);
lcd.Display("C");
delay(200);

}
//**

8.Test Result

Compile and upload the code to ESP32, after the code is uploaded successfully, power up with a USB cable and you
will see that the LCD 128X32 DOT displays the voltage value of the thermistor and the temperature value in the current
environment.

566 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

9.22 Project 22Bluetooth

This chapter mainly introduces how to make simple data transmission through Bluetooth of ESP32 and mobile phones.
Project 22.1 is classic Bluetooth while project 22.2 is Bluetooth control LED.

9.22.1 Project 22.1Classic Bluetooth

1.Components

ESP32*1 USB Cable*1

In this tutorial we need to use a Bluetooth APP called serial Bluetooth terminal to assist in the experiment.

Download link: https://www.appsapk.com/serial-bluetooth-terminal/ .

2.Component Knowledge

Bluetooth is a short-distance communication system that can be divided into two types, namely low power bluetooth
(BLE) and classic bluetooth. There are two modes for simple data transfer: master mode and slave mode.

Master Mode: In this mode, work is done on the master device and can be connected to the slave device. When the
device initiates a connection request in the main mode, information such as the address and pairing password of other
bluetooth devices are required. Once paired, you can connect directly to them.

Slave Mode: A bluetooth module in the slave mode can only accept connection requests from the host, but cannot
initiate connection requests. After being connected to a host device, it can send and receive data through the host
device.

Bluetooth devices can interact with each other, when they interact, the bluetooth device in the main mode searches
for nearby devices. While a connection is established, they can exchange data. For example, when a mobile phone
exchanges data with ESP32, the mobile phone is usually in master mode and the ESP32 is in slave mode.

9.22. Project 22Bluetooth 567

https://www.appsapk.com/serial-bluetooth-terminal/

ESP32 Learning Kit

Master Slave

3.Wiring Diagram

We can use a USB cable to connect ESP32 mainboard to the USB port on the Raspberry P.

4.Test Code

568 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

//**
/*
* Filename : Classic Bluetooth--SerialToSerialBT
* Description : ESP32 communicates with the phone by bluetooth and print phone's data␣
→˓via a serial port
* Auther : http//www.keyestudio.com
*/
#include "BluetoothSerial.h"

BluetoothSerial SerialBT;
String buffer;
void setup() {
Serial.begin(115200);
SerialBT.begin("ESP32test"); //Bluetooth device name
Serial.println("\nThe device started, now you can pair it with bluetooth!");

}

void loop() {
if (Serial.available()) {
SerialBT.write(Serial.read());

}
if (SerialBT.available()) {

(continues on next page)

9.22. Project 22Bluetooth 569

ESP32 Learning Kit

(continued from previous page)

Serial.write(SerialBT.read());
}
delay(20);

}
//**

5.Test Result

Compile and upload the code to the ESP32. After uploading successfullywe will use a USB cable to power on. Open
the serial monitor and set the baud rate to 115200 then press the reset button first. When you see the serial monitor
prints out the character string as below, it indicates that the Bluetooth of ESP32 is ready and waiting for connection
with a phone. (If open the serial monitor and set the baud rate to 115200, the information is not displayed, please press
the RESET button of the ESP32)

Make sure that the Bluetooth of your phone has been turned on and “Serial Bluetooth Terminal”has been installed.

Click“Search”search for the nearby Bluetooth and select to connect the“ESP32 test”.

570 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Turn on software APP, click the left of the terminal. Select “Devices” .

Select ESP32test in classic Bluetooth mode, and a successful connecting prompt will appear as shown below.

9.22. Project 22Bluetooth 571

ESP32 Learning Kit

Data can be transferred between your phone and the Raspberry Pi via ESP32 now.

Send“Hello!”, When the Raspberry Pi receives it, which will reply with “Hi!”.

572 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

9.22.2 Project 22.2Bluetooth Control LED

1.Components

ESP32*1 Breadboard*1

Red LED*1 220Resistor*1

Jumper Wires USB Cable*1

2.Wiring Diagram

9.22. Project 22Bluetooth 573

ESP32 Learning Kit

3.Test Code

574 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

//**
/*
* Filename : Bluetooth Control LED
* Description : The phone controls esp32's led via bluetooth.

When the phone sends "LED_on," ESP32's LED lights turn on.
When the phone sends "LED_off," ESP32's LED lights turn off.

* Auther : http//www.keyestudio.com
*/
#include "BluetoothSerial.h"
#include "string.h"
#define LED 15
BluetoothSerial SerialBT;
char buffer[20];
static int count = 0;
void setup() {
pinMode(LED, OUTPUT);
SerialBT.begin("ESP32test"); //Bluetooth device name
Serial.begin(115200);
Serial.println("\nThe device started, now you can pair it with bluetooth!");

}

void loop() {
(continues on next page)

9.22. Project 22Bluetooth 575

ESP32 Learning Kit

(continued from previous page)

while(SerialBT.available())
{
buffer[count] = SerialBT.read();
count++;

}
if(count>0){
Serial.print(buffer);
if(strncmp(buffer,"led_on",6)==0){
digitalWrite(LED,HIGH);

}
if(strncmp(buffer,"led_off",7)==0){
digitalWrite(LED,LOW);

}
count=0;
memset(buffer,0,20);

}
}
//**

4.Test Result

Compile and upload the code to the ESP32. The APP operation is the same as the project 22.1. To make the external
LED on and off, simply change the sending content to “led_on” and “led_off”. Moving the APP to send data:

The serial monitor will display as follows:

576 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Note: If the “led-on ‘or” led-off ” is not sent, the status of the LED will not change. If the LED is on, it remains
on when irrelevant content is received; Conversely, if the LED is off, it continues to be off when irrelevant content is
received.

9.23 Project 23WiFi Station Mode

1.Introduction

ESP32 has three different WiFi operating modes : Station modeAP mode and AP+Station mode. All WiFi programming
projects must be configured with WiFi operating mode before using, otherwise WiFi cannot be used. In this project,
we are going to learn the WiFi Station mode of the ESP32.

2.Components

9.23. Project 23WiFi Station Mode 577

ESP32 Learning Kit

ESP32*1 USB Cable*1

3.Wiring Diagram

Plug the ESP32 to the USB port of the Raspberry Pi

4.Component Knowledge

Station mode

When setting Station mode, the ESP32 is taken as a WiFi client. It can connect to the router network and communicate
with other devices on the router via a WiFi connection. As shown in the figure below, the PC and the router have been
connected. If the ESP32 wants to communicate with the PC, the PC and the router need to be connected.

578 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

5.Test Code

9.23. Project 23WiFi Station Mode 579

ESP32 Learning Kit

Since WiFi names and passwords vary from place to place, thereby users need to enter the correct WiFi names and
passwords in the box shown below before running the program code.

580 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

//**
/*
* Filename : WiFi Station
* Description : Connect to your router using ESP32
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h> //Include the WiFi Library header file of ESP32.

//Enter correct router name and password.
const char *ssid_Router = "ChinaNet-2.4G-0DF0"; //Enter the router name
const char *password_Router = "ChinaNet@233"; //Enter the router password

void setup(){
Serial.begin(115200);
delay(2000);
Serial.println("Setup start");
WiFi.begin(ssid_Router, password_Router);//Set ESP32 in Station mode and connect it to␣

→˓your router.
Serial.println(String("Connecting to ")+ssid_Router);

//Check whether ESP32 has connected to router successfully every 0.5s.
while (WiFi.status() != WL_CONNECTED){
delay(500);

(continues on next page)

9.23. Project 23WiFi Station Mode 581

ESP32 Learning Kit

(continued from previous page)

Serial.print(".");
}
Serial.println("\nConnected, IP address: ");
Serial.println(WiFi.localIP());//Serial monitor prints out the IP address assigned to␣

→˓ESP32.
Serial.println("Setup End");

}

void loop() {
}
//**

6.Test Result

After making sure the router name and password are entered correctly, compile and upload the code to ESP32, open
serial monitor and set baud rate to 115200 then press the reset button first. When ESP32 successfully connects
to“ssid_Router”, serial monitor will print out the IP address, then monitor will display as follows: (If open the se-
rial monitor and set the baud rate to 115200 and the information is not displayed, please press the RESET button of the
ESP32).

582 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

9.24 Project 24WiFi AP Mode

1.Introduction

In this project, we are going to learn the WiFi AP mode of the ESP32.

2.Components

ESP32*1 USB Cable*1

3.Wiring Diagram

Plug the ESP32 mainboard to the USB port of the Raspberry Pi

4.Component Knowledge

AP Mode:

When setting AP mode, a hotspot network will be created, waiting for other WiFi devices to connect. As shown below;

9.24. Project 24WiFi AP Mode 583

ESP32 Learning Kit

5.Test Code

584 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

Before running the code , you can make any changes to the ESP32 AP name and password in the box as shown below,
but in a default circumstance, it doesn’t need to modify.

9.24. Project 24WiFi AP Mode 585

ESP32 Learning Kit

//**
/*
* Filename : WiFi AP
* Description : Set ESP32 to open an access point
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h> //Include the WiFi Library header file of ESP32.

const char *ssid_AP = "ESP32_WiFi"; //Enter the router name
const char *password_AP = "12345678"; //Enter the router password

IPAddress local_IP(192,168,1,108);//Set the IP address of ESP32 itself
IPAddress gateway(192,168,1,1); //Set the gateway of ESP32 itself
IPAddress subnet(255,255,255,0); //Set the subnet mask for ESP32 itself

void setup(){
Serial.begin(115200);
delay(2000);
Serial.println("Setting soft-AP configuration ... ");
WiFi.disconnect();
WiFi.mode(WIFI_AP);
Serial.println(WiFi.softAPConfig(local_IP, gateway, subnet) ? "Ready" : "Failed!");

(continues on next page)

586 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

(continued from previous page)

Serial.println("Setting soft-AP ... ");
boolean result = WiFi.softAP(ssid_AP, password_AP);
if(result){
Serial.println("Ready");
Serial.println(String("Soft-AP IP address = ") + WiFi.softAPIP().toString());
Serial.println(String("MAC address = ") + WiFi.softAPmacAddress().c_str());

}else{
Serial.println("Failed!");

}
Serial.println("Setup End");

}

void loop() {
}
//**

6.Test Result

Enter the ESP32 AP name and password correctly, compile and upload the code to ESP32, open the serial monitor and
set the baud rate to 115200 and press the reset button first, then monitor will display as follows:

(If open the serial monitor and set the baud rate to 115200, the information is not displayed, please press the RESET
button of the ESP32)

When observing the printed information of the serial monitor, turn on the WiFi scanning function of the mobile phone,
you can see the ssid_AP on ESP32, which is dubbed “ESP32_Wifi” in this code. You can connect to it either by typing
the password “12345678” or by modifying the code to change its AP name and password.

9.24. Project 24WiFi AP Mode 587

ESP32 Learning Kit

9.25 Project 25WiFi Station+AP Mode

1.Introduction

In this project, we are going to learn the AP+Station mode of the ESP32.

2.Components

ESP32*1 USB Cable*1

3.Wiring Diagram

Plug the ESP32 mainboard to the USB port of the Raspberry Pi

4.Component Knowledge

AP+Station mode:

588 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

In addition to the AP mode and the Station mode, AP+Station mode can be used at the same time. Turn on the Station
mode of the ESP32, connect it to the router network, and it can communicate with the Internet through the router. Then
turn on the AP mode to create a hotspot network. Other WiFi devices can be connected to the router network or the
hotspot network to communicate with the ESP32.

5.Test Code

Before running the code, you need to modify the ssid_Router, password_Routerssid_AP and password_AP, as shown
in the box below:

9.25. Project 25WiFi Station+AP Mode 589

ESP32 Learning Kit

//**
/*
* Filename : WiFi AP+Station
* Description : ESP32 connects to the user's router, turning on an access point
* Auther : http//www.keyestudio.com
*/
#include <WiFi.h>

const char *ssid_Router = "ChinaNet-2.4G-0DF0"; //Enter the router name
const char *password_Router = "ChinaNet@233"; //Enter the router password
const char *ssid_AP = "ESP32_WiFi"; //Enter the router name
const char *password_AP = "12345678"; //Enter the router password

void setup(){
Serial.begin(115200);
Serial.println("Setting soft-AP configuration ... ");
WiFi.disconnect();
WiFi.mode(WIFI_AP);
Serial.println("Setting soft-AP ... ");
boolean result = WiFi.softAP(ssid_AP, password_AP);
if(result){
Serial.println("Ready");

(continues on next page)

590 Chapter 9. C language (Raspberry Pi) Tutorial

ESP32 Learning Kit

(continued from previous page)

Serial.println(String("Soft-AP IP address = ") + WiFi.softAPIP().toString());
Serial.println(String("MAC address = ") + WiFi.softAPmacAddress().c_str());

}else{
Serial.println("Failed!");

}

Serial.println("\nSetting Station configuration ... ");
WiFi.begin(ssid_Router, password_Router);
Serial.println(String("Connecting to ")+ ssid_Router);
while (WiFi.status() != WL_CONNECTED){
delay(500);
Serial.print(".");

}
Serial.println("\nConnected, IP address: ");
Serial.println(WiFi.localIP());
Serial.println("Setup End");

}

void loop() {
}
//**

6.Test Result

Ensure that the code in the program has been modified correctly, compile and upload the code to the ESP32. After
uploading successfullywe will use a USB cable to power on. Open the serial monitor and set the baud rate to 115200
and press the reset button, then monitor will display as follows: (If open the serial monitor and set the baud rate to
115200 and the information is not displayed, please press the RESET button of the ESP32)

9.25. Project 25WiFi Station+AP Mode 591

ESP32 Learning Kit

Open the WiFi scanning function of the mobile phone, you can see the ssid_AP.

592 Chapter 9. C language (Raspberry Pi) Tutorial

	1.Description
	2.Kit list
	3.Keyestudio ESP32 Core board
	Getting started with Arduino
	Windows System：
	Download and install Arduino software：
	Install a driver on Windows：
	Install the ESP32 on Arduino IDE：
	Arduino IDE Setting:

	Arduino MacOS
	Development Environment Configuration–Mac OS
	Download Arduino IDE:
	How to install the CP2102 driver：

	Arduino Tutorial
	Download Arduino code and library files
	Project 01: Hello World
	1.Introduction
	2.Components
	3.Wiring
	4.Test Code
	5.Test Result

	Project 02: Turn On LED
	1.Introduction
	2.Components
	3.Component Knowledge
	（1）LED:
	（2）Five-band resistor
	（3）Bread board
	（4）Power Supply

	4.Wiring Diagram
	5.Test Code
	6.Test Result

	Project 03：LED Flashing
	1.Introduction
	2.Components
	3.Wiring Diagram
	4.Test Code
	5.Test Result

	Project 04: Breathing Led
	1.Introduction
	2.Components
	3.Component Knowledge
	Analog & Digital
	PWM：
	ESP32 and PWM:

	4.Wiring Diagram
	5.Test Code
	6.Test Result

	Project 05：Traffic Lights
	1.Introduction
	2.Components
	3.Wiring Diagram
	4.Test Code
	5.Test Result

	Project 06: RGB LED
	1.Introduction
	2.Components
	3.Component Knowledge
	4.Wiring Diagram
	5.Test Code
	6.Test Result

	Project 07: Flowing Water Light
	1.Introduction
	2.Components
	3.Wiring Diagram
	4.Test Code
	5.Test Result

	Project 08：1-Digit Digital Tube
	1.Introduction
	2.Components
	3.Component Knowledge
	4.Wiring Diagram
	5.Test Code
	6.Test Result

	Project 09：4-Digit Digital Tube
	1.Introduction
	2.Components
	3.Component Knowledge
	4.Wiring Diagram
	5.Test Code
	6.Test Result

	Project 10：8×8 Dot-matrix Display
	1.Introduction
	2.Components
	3.Component Knowledge
	4.Wiring Diagram
	5.Test Code
	6.Test Result

	Project 11：74HC595N Control 8 LEDs
	1.Introduction
	2.Components
	3.Component Knowledge
	5.Test Code
	6.Test Result

	Project 12：Active Buzzer
	1.Introduction
	2.Components
	3.Component Knowledge
	Active buzzer:
	Transistor:

	4.Wiring Diagram
	5.Test Code
	6.Test Result

	Project 13：Passive Buzzer
	1.Introduction
	2.Components
	3.Component Knowledge
	Passive buzzer:
	Transistor:

	4.Wiring Diagram
	5.Test Code
	6.Test Result

	Project 14: Mini Table Lamp
	1.Introduction
	2.Components
	3.Component Knowledge
	Button:
	Schematic diagram of the button:
	What is button [shake](javascript:;)?
	How to eliminate the [shake](javascript:;)?

	4.Wiring Diagram
	5.Test code
	6.Test Result

	Project 15：Tilt and LED
	1.Introduction
	2.Components
	3.Component Knowledge
	4.Wiring Diagram
	5.Test Code
	6.Test Result

	Project 16: I2C 128×32 LCD
	1.Introduction
	2.Components
	3.Component Knowledge
	LCD_128X32_DOT:
	Schematic diagram of LCD_128X32_DOT
	Features:

	4.Wiring Diagram
	5.Adding the lcd128_32_io library
	6.Test Code
	7.Test Result

	Project 17：Small Fan
	1.Introduction
	2.Components
	3.Component Knowledge
	Keyestudio Breadboard Power Supply Module
	Introduction
	Specification

	4.Wiring Diagram 1
	5. Test Code
	6.Test Result 1
	7.Wiring Diagram 2
	8.Test Code 2
	9.Test Result 2

	Project 18：Dimming Light
	1.Introduction
	2.Components
	3.Component Knowledge
	Adjustable potentiometer:
	ADC :
	DAC：
	ADC on ESP32：

	4.Wiring diagram of the dimming lamp
	5.Test Code
	6.Test Result

	Project 19：Flame Alarm
	1.Introduction
	2.Components
	3.Component Knowledge
	4. Read the ADC value, DAC value and voltage value of the flame sensor
	5.Wiring diagram of the flame alarm
	6.Test Code
	7.Test Result

	Project 20：Night Lamp
	1.Introduction
	2.Components
	3.Component Knowledge
	4.Read the ADC value, DAC value and voltage value of the photoresistor
	5.Wiring diagram of the light-controlled lamp：
	6.Test Code
	7.Test Result

	Project 21: Temperature Instrument
	1.Introduction
	2.Components
	3.Component Knowledge
	4.Read the value of the Thermistor
	5.Wiring diagram of the temperature instrument
	6.Adding the lcd128_32_io library
	7.Test Code
	8.Test Result

	Project 22：Bluetooth
	Project 22.1：Classic Bluetooth
	1.Components
	2.Component Knowledge
	3.Wiring Diagram
	4.Test Code
	6.Test Result

	Project 22.2：Bluetooth Control LED
	1.Components
	2.Wiring Diagram
	3.Test Code
	4.Test Result

	Project 23：WiFi Station Mode
	1.Introduction
	2.Components
	3.Wiring Diagram
	4.Component Knowledge
	5.Test Code
	6.Test Result

	Project 24：WiFi AP Mode
	1.Introduction
	2.Components
	3.Wiring Diagram
	4.Component Knowledge
	5.Test Code
	6.Test Result

	Project 25：WiFi Station+AP Mode
	1.Introduction
	2.Components
	3.Wiring Diagram
	4.Component Knowledge
	5.Test Code

	Getting started with Python
	Python Tutorial
	Download Python code files
	Development Environment Configuration
	Project 01: Hello World
	Project 02: Turn On LED
	Project 03：LED Flashing
	Project 04: Breathing Led
	Project 05：Traffic Lights
	Project 06: RGB LED
	Project 07: Flowing Water Light
	Project 08：1-Digit Digital Tube
	Project 09：4-digit Digital Tube
	Project 10：8×8 Dot-matrix Display
	Project 11：74HC595N Control 8 LEDs
	Project 12：Active Buzzer
	Project 13：Passive Buzzer
	Project 14: Mini Table Lamp
	Project 15：Tilt And LED
	Project 16: I2C 128×32 LCD
	Project 17：Small Fan
	Project 18：Dimming Light
	Project 19：Flame Alarm
	Project 20：Night Lamp
	Project 21：Temperature Instrument
	Project 22：WiFi Station Mode
	Project 23：WiFi AP Mode
	Project 24：WiFi Station+AP Mode

	Getting started with C language(Raspberry Pi)
	Install the Raspberry Pi OS System：
	1. Tools needed for the Raspberry Pi system：
	1.1. Hardware Tool：
	1.2. Software tools that need to be installed：
	1.3. Raspberry PI mirror system

	2. Install Raspberry Pi OS system on Raspberry Pi 4B:

	Preparation of C language control basic hardware:
	(1)Description of basic raspberry pi accessories：
	Raspberry Pi +ESP32 main board + breadboard +USB cable, as shown below：
	(2) Download and install Arduino IDE：
	(3) Install the ESP32 on Arduino IDE：
	3. Arduino IDE Settings and Toolbars:

	Import the Arduino C library
	What are Libraries ?
	How to Install a Library ?

	C language (Raspberry Pi) Tutorial
	Project 01: Hello World
	Project 02: Turn On LED
	Project 03：LED Flashing
	Project 04: Breathing Led
	Project 05：Traffic Lights
	Project 06: RGB LED
	Project 07: Flowing Water Light
	Project 08：1-Digit Digital Tube
	Project 09：4-Digit Digital Tube
	Project 10：8×8 Dot-matrix Display
	Project 11：74HC595N Control 8 LEDs
	Project 12：Active Buzzer
	Project 13：Passive Buzzer
	Project 14: Mini Table Lamp
	Project 15：Tilt And LED
	Project 16: I2C 128×32 LCD
	Project 17：Small Fan
	Project 18: Dimming Light
	Project 19：Flame Alarm
	Project 20: Night Lamp
	Project 21：Temperature Instrument
	Project 22：Bluetooth
	Project 22.1：Classic Bluetooth
	Project 22.2：Bluetooth Control LED

	Project 23：WiFi Station Mode
	Project 24：WiFi AP Mode
	Project 25：WiFi Station+AP Mode

